Al Summer School

Stochastic Optimization for
Large-Scale Machine Learning

I-Hsiang Wang

National Taiwan University
ihwang@ntu.edu.tw

2019.08.13 @NTU

mostaes IRty A1 Summer School 2019

mailto:ihwang@ntu.edu.tw

ML: from Data to Intelligence

VET I
: — Al
Learnlng *Al” = “skills”

IN Most cases

 Many successful applications needless to say ...

« How well a machine can learn depends on many factors:

Amount of data How much data should be used?
Feature selection What features should be chosen?
Model selection What learning model should we use?
Training algorithm How to train the learning model?

 Focus today: training large-scale ML models with big data

ostuzs Klnlu (2 2 A1 Summer School 2019

Abstraction of ML (1/3)

Data generated from a black box

iINnput output
reX black box > ycy
*supervised learning
keywords in an article topic
image of a handwritten digit the digit
fMRI image status of disease
text of a message spam or not

mostuzs IXxinlu 3 A1 Summer School 2019

Abstraction of ML (2/3)

But we do not completely know how the black box works

iINput) output
N g ¥ X estimated . g Epj;
black box

training | learning
data algorithm

so we try to learn how it works from data!

mostuzs IXxinlu 4 A1 Summer School 2019

Abstraction of ML (3/3)

Goal: the estimated box can predict the actual output well.

iINnput output
reX black box > Yyey
U
iINnput i output
" estimated o
r e X > >/ yey
black box
/ how to quantify how
belongs to some learning model good the prediction is?

parametrized by w € W

mostuzs IXxinlu 5 A1 Summer School 2019

Quantifying the Effectiveness

e | oss function: /¢ : y xY =R, (9,y) — £(4,y)

> Quantify the cost of predicting y when the actual outcome is ¥

 Examples:
» 0-1 loss (classification) 4(¢,y) = 1 {9 # y}

> hinge loss (binary classification)

0g,y) =1 —gy)" Y={*1}, Y=R

> cross entropy loss (prediction/classification)

A

lYy,y) = — fle yilogy;, Y=Y ="Py

> norm loss (regression) 4(g,y) = ||y — y||

mostuzs IXlnlu 6

A1 Summer School 2019

Learning Model

* Typically the estimated blackbox takes the following form:
» Raw data = is mapped to a high-dimensional feature x € R

> Feature fed to a learning model to produce an output

> The model is configured by parameter w € R*™™

Xr —

Xr —

o(-) | = d(z) =@ € R

h(-; w)

A

— h(x;w) =: g

» The simplified goal of ML: finding a “good” w € R

 How to define “good”?

mostuzs IXlnlu

A1 Summer School 2019

Expected Loss (Statistical Risk)

(X,Y)~P =Pxy =Py xPx

ground truth

testing Py x . Y
iInput
X —
X ~ Px prediction

o h(o(r); w) Y

L(w; P) = E(x y)~p [((R(A(X);w),Y)

It quantifies how well the selected
w € R performs on the average

mostazs IXinlu 8 A1 Summer School 2019

General Learning Framework

4~ P

testing data Correspondence

r g ~
(y, /W x Z—->R
_ Y,

average over randomly
a selected testing point

\4

L(w; P) = Ez.p [l(w, Z)]

mostazs Ilnlu 9 A1 Summer School 2019

Risk Minimization is Challenging

o Simplified goal of ML: find the best w € W by solving an
optimization problem:;

w” € argmin {L(w; P) |w € W}

» Unfortunately ill-posed since ground truth P is unknown
* Jraining data come to rescue -
approximate the statistical risk by the empirical risk.

statistical risk ~ L(w; P) 2 Ez.p [{(w, Z)]

A

o 1
empirical risk L(w; 21, ...,2n) & =) l(w, 2)
N—— mn
training data =1

 Computationally challenging if n is huge.

mostazs IXIRlu 10 A1 Summer School 2019

Stochastic Optimization

minimize,,cre F(w) =Ez |[f(w; 2)
N—— —,—,.—,_———
statistical risk, empirical risk, etc.

 /:.randomness in the problem
» Statistical risk: Z ~ P unknown distribution
> Empirical risk: Z ~ P,, ., =213" 4, empirical distribution

* Evaluation of the objective function, its gradient, Hessian,
etc., can be quite challenging, because:
> The distribution may be unknown
> Even it is known, taking the expectation can be expensive

* |dea: stochastically approximate these quantities.

mostuzs IXxinlu 11 A1 Summer School 2019

First-Order Methods

* |n this lecture we only focus on first-order iterative
optimization methods.

* Per-iteration computation cost is O(d) for w € RY
because it only uses gradient information in each iterate.

 Second-order methods using Hessian etc. are much more
expensive if the feature/model is very high-dimensional.

mostuzs IXxinlu 12 A1 Summer School 2019

Stochastic Gradient Method

Stochastic Gradient Method [Rrobbins and Monro, 1951]:
Initialize: start with w!!
Update: In each iteration ¢ > 1:
1) Generate a realization of a random &:
2) Compute a stochastic vector g(w[t] &)
3) Choose a step size ¢ > 0
4) Update w! T !t — mg(w[t],gt)
Terminate: after 7 iterations, output

w° — {wll . w1}

 Here g(fw[t],&g) is some update direction estimating the
true gradient V,F(w) = Ez [V f(w; Z)
(unbiased estimate)

mostazs Mlnlu 13 A1 Summer School 2019

SGD for Risk Minimization

For machine learning problems, estimating the gradient of
the (empirical) risk function can be done very naturally.

Statistical Risk Empirical Risk
F(w) = L(w; P) ——Z€
=Ez~p [l(w, Z) =1 w)
Choose the random variable in SGD Choose the random variable in SGD
&P & " Unif{L, ..., n}
Although P is unknown, if there is At each time, uniformly at random

sufficient amount of homogeneous pick one out of n training samples
training data, we can pick each & to (let & be its index) and get
be a fresh tralnlng sample Zt, and g(w!l &) « Vfe, (w!™

VwE(w[t],Z€t)

mostazs Mlnlu 14 A1 Summer Scﬁool‘zmg

Stochastic vs. Full-Batch in Training

* Jraining, in the context of this lecture, is equivalent to
solving the empirical risk minimization (ERM) problem:

MINIMIZE,, ey i(w, L1y eeey Zn) = % Z?:l é(wv Z@)
N ——
F(w) fi(w)

Everything is deterministic, nothing random. Why SGD?

e Baseline — gradient descent (GD): in each iteration, the
update direction is the full gradient

VE(w) = 5 >0 Vfi(w)

o Stochastic gradient vs. Full Gradient:

> Much cheaper per-iteration cost.
> Exploit the information in training data more efficiently.

mostuzs IXxinlu 15 A1 Summer School 2019

Sinary classification
RCV1 dataset

_ogistic loss

SGD learning rate 1 = 4

Batch method: limited memory
BFGS, a quasi-Newton method

® & o6 o o

Empirical Risk

0 0.5 1 1.5 2 2.5 3 3.5

Accessed Data Points x1045 [BOttOU, CUI’tiS, and Nocedal, 201 8]

* |ntuition: a lot of redundancy in training data; no need to
use the entire batch in each iteration.

 Empirical observation: SGD exploits the training data
efficiently in the beginning, but quickly saturates.

mosTuzs AXlnlu 16 A1 Summer School 2019

Intuitive Explanation

~mostuzs Ilntu

17

A1 Sumi

ner School 20

19

Intuitive Explanation

F(w)
>
—0 ® | | > W
w[l] —1 O* +1
< -1 w

mostass MXlnlu 18 A1 Summer School 2019

Intuitive Explanation

Initially, when far away from w®, the point moves fast and
the direction is consistent (with fixed step size).

mosTazs MXlnlu 19 A1 Summer School 2019

Intuitive Explanation

mostass MXlnlu 20 A1 Summer School 2019

Intuitive Explanation

F(w)

When getting close to w™, the point becomes “confused”
and moves to the optimum very slowly (with fixed step size).

mosTazs MXlnlu 21 A1 Summer School 2019

Emerging Questions

 Convergence guarantees of SGD?
 How does it depend on the problem structure?

* How does it depend on how well the stochastic gradient
estimates the true gradient?

» Better choice of step sizes (learning rate)?
* Acceleration?

Next: some theoretical results to answer these questions in
a rigorous and systematic way.

Begin with convex problems.

mostuzs IXxinlu 22 A1 Summer School 2019

Why Convexity

Without further structural conditions, it is hard to obtain
global convergence (no assumption on initialization) to
global (or even local) optimum

Convexity guarantees global convergence to optimum.
Local optimum = global optimum.

Note:
* Most algorithms still work without convexity

* Landscape of hon-convex problems: local convexity
around a local minimum

mostuzs IXxinlu 23 A1 Summer School 2019

Convexity — Convex Set

* Convex set: aset W C R? is convex if Vu,v € W and
VAe 0,1, du+(1—XNveWw

convex NOoN-convex

mostuzs IXxinlu 24 A1 Summer School 2019

Convexity — Convex Function

* Convex set: aset W C R? is convex if Vu,v € W and
VAe 0,1, du+(1—XNveWw

* Convex function: a function ¢ : W — R is convex if its
domain is a convex set and Vwgp, w; € W VA € [0,1]
(wx = (1= Nwo + Awy, ¥ 2 glw;), ya = (1 = N)yo + Ay1)

yx — g(wy) >0

mostuzs IXxinlu 25 A1 Summer School 2019

Conditions for Convexity

* For a differentiable function g : YW — R , it Is convex Iff
g(v) — grw(v) >0 VYw,ve W (irst-order condition)

91w (V) 2 g(w) + (Vg(w),v — w) (first-order approximation)

mostuzs IXxinlu 26 A1 Summer School 2019

Conditions for Convexity

* For a differentiable function g : YW — R , it Is convex Iff
g(v) — grw(v) >0 VYw,ve W (irst-order condition)

91w (V) 2 g(w) + (Vg(w),v — w) (first-order approximation)

 For a general function ¢ : YW — R, define its
subdifferential at point w as

Og(w) = {h: g(v) > g(w) + (h,v —w), Vv € W}

Function ¢g: W — R is convex iff dg(w) #0) Vw € W

mostuzs IXxinlu 27 A1 Summer School 2019

| g(’w) + <h7v - w>
g(w) ! h € 0g(w)

osruzs Xinlu 28 A7 Summer School 2019

Conditions for Convexity

* For a differentiable function g : YW — R , it Is convex Iff
g(v) — grw(v) >0 VYw,ve W (irst-order condition)

91w (V) 2 g(w) + (Vg(w),v — w) (first-order approximation)

 For a general function ¢ : YW — R, define its
subdifferential at point w as

Og(w) = {h: g(v) > g(w) + (h,v —w), Vv € W}

Function ¢g: W — R is convex iff dg(w) #0) Vw € W

* For a twice-differentiable function g : YW — R, it is convex
Iff its Hessian Is positive semi-definite:

VZg(’w) ~ 0, Yw €)YV (second-order condition)

mostuzs IXxinlu 29 A1 Summer School 2019

Minimizer of a Convex Function

* Convex program (convex optimization problem):

i g(w)

> Objective function ¢ : W — R is a convex function
» Feasible set 1V Is a convex set.

* For a differentiable convex objective function g : W — R,
the minimizer of the above can be characterized by the
following first-order optimality condition:

w" € argming(w) <— (Vg(w*),w —w") >0, Vw € W
we W

e Local optimum = global optimum for convex programs

mostazs Mlnlu 30 A1 Summer Scﬁool‘zmg

Strong Convexity

Sometimes we need something stronger than convexity.
Get faster convergence, gain stability for the minimizer, etc.

* Afunction ¢g:)W — R Iis called a-strongly convex if
Vwy,wi €W Ve l0,1],

ux — g(wy) > A1 — \) [lwg — w||°

e First-order condition:
g(v) = grw(v) > S v —w|® Yw,veW

» Second-order condition: VZg(w) = alg, Vw € W

* Minimizer of a-strongly convex function (say, w*) satisfies
g(w) — g(w*) > § lw —w*|*, Yw e W

mostazs Mlnlu 31 A1 Summer Scﬁool‘zmg

Convex Strongly Convex

N

coerwns Adris 39 A9 Summer Scﬁool‘zow

Smoothness

* |f a function has a Lipschitz continuous gradient, it must
be fairly smooth. The degree of smoothness is governed
by the Lipschitz constant of the gradient.

* A differentiable function g : W — R Is 3-smooth if
(Vg(w) — Vg(v),w —v) < B |lw — ’UH2 Vw,v €W

e First-order condition:
9(v) — g1w(®) < 5 v —w|® Vw,veWw

« Second-order condition: VZg(w) =< BI;, Yw € W

* Note: it is dual of strong convexity.

mostuzs IXxinlu 33 A1 Summer School 2019

Non-smooth Smooth

mostazs IXIplu 34 A7 Summer School 2019

Gradient Method

* Consider unconstrained smooth optimization:

gg@% f(x) f: B-smooth

* A general descent iterative method:

» Update: call the oracle and decide an increment 6§t to “move” the

point from x!* to !t : g+l = Zlt 1 5l

> The direction % Is called the descent direction.

* |n unconstrained smooth problems with first-order oracle,
the descent direction is usually determined by gradients.

e (Gradient descent: choose the descent direction as the

anti-gradient:
o) = —n, Vf (), n, >0

mostuzs IXxinlu 35 A1 Summer School 2019

Constrained Problems

min f(z)

e The feasible set tells hard constraints on the solution.

* In general the feasible set 9 C R?. GD might go out of
bound. Some additional steps are needed.

* First idea: after the descent, find the “closest” pointin Q
and use it as the new iterate.

mostazs Mlnlu 36 A1 Summer Scﬁool‘zmg

Projected Gradient Descent

projection

xh — 0, Vf (x) —— Projg {a! — n,Vf(a!)} =: 2+
* Projection step (Euclidean Projection):

Pron{w} 2 argmin||y — x||2
yeo

« Caveat: projection might be computationally expensive.

37

Convergence of Gradient Descent

Set-up:

* Criterion: f(x°) — f(x™) (gap in objective function values)
 # of update iterations: 7

« Initial distance to the optimum: D := ||zY) — z*||?

Convex, [-smooth objective function:
« Convexity only: O(Djr™ 1)
* «-strongly convex: O(DB(1 — £)7)

B
« Achieved with fixed step size n, = 37

mostazs Mlnlu 38 A1 Summer Scﬁool‘zmg

Non-Differentiable Problems

What if it is not differentiable at certain points?

|dea: replace the gradient by a subgradient.
e Call it “subgradient descent” (sGD).

How to guarantee convergence without smoothness?
 Subgradient may no longer be a descent direction.
 Convergence becomes slower.

mostuzs IXxinlu 39 A1 Summer School 2019

Anti-subgradient # Descent Direction

* With smoothness, anti-gradient direction is a descent
direction as long as step size is small enough.

* Without smoothness, this is no longer true.

>

° Example' f(il'}l,il’ig) — |$1| —+ 2|£l’}2| - >
At (z1,72) = (1,0): /

» g1 = (1,0) € 8f(:1:1,w2), —4d1 |s a descent direction.

» g2 = (1,2) € 9f(x1,%2) | —ga is not a descent direction.
 Why? Without smoothness, one can change directions
significantly but still satisfy the subgradient condition.

» Since {f(z!"),t =1,2,...} is no longer monotone, the
final output of the algorithm is no longer the last one.

mosTazs IXlnlu 40 A1 Summer School 2019

Lipschitz Continuity

 Afunction g: W — R is p-Lipschitz if Vw;,ws € W,

g(w1) — g(ws2)| < p|lwi — wa

* |ntuitively, Lipschitz function cannot change too fast.

 For a convex function g defined on an open set W C R¢,
being p-Lipschitz is equivalent to having bounded
(sub-)gradients (upper bounded by p).

mosTazs MXlnlu 41 A1 Summer School 2019

Convergence of Gradient Descent

Set-up:

* Criterion: f(x°) — f(x™) (gap in objective function values)
 # of update iterations: 7

« Initial distance to the optimum: D := ||zY) — z*||?

Convex, p-Lipschitz continuous objective function:
* Convexity only: O(\/Dp?r™7)

* a-strongly convex: O(p?a~tr1)

* Taking average of the iterates

e Or selecting the best among all iterates

mostazs IXIRlu 42 A1 Summer School 2019

Summary: lteration Complexity

Criterion: f(x°) — f(x*) <€

Convex, 3-smooth objective function:
« Convexity only: O(Dpe™ 1)

+ a-strongly convex: O(% log(e™1)) conionnumber

Convex, p-Lipschitz continuous objective function:
e Convexity only: O(Dp?e~?)
* a-strongly convex: O(p?a~te)

mostazs Mlnlu 43 A1 Summer Scﬁool‘zmg

Work Complexity of Full GD in Training

min, Flw)=2=>" flw,z), weR
fi(w)

Criterion: F(w°) — F(w") < e. Per iteration cost: ©(nd)

Convex, 3-smooth loss function:
 Convexity only: O(DBe™ 1) xO(nd)
* a-strongly convex: O(klog(e 1)) xO(nd)

Convex, p-Lipschitz continuous loss function:
« Convexity only: O(Dp?e?) xO(nd)
« a-strongly convex: O(p*a~te 1) xO(nd)

mostuzs IXxinlu 44 A1 Summer School 2019

Stochastic Convex Optimization

min F(w) = Ez [f(w; 2)

Questions:
 What if the (sub)gradient becomes noisy?
« How does the noise impact the convergence rate?

Convergence in expectation (can be strengthened)

e Convergence for strongly convex smooth optimization
slows down significantly. Fixed step sizes falil.

 Convergence for non-smooth problems is not affected.

mostuzs IXxinlu 45 A1 Summer School 2019

Stochastic (sub)Gradient Method

Stochastic (sub)Gradient Method
Initialize: start with w!!
Update: In each iteration ¢ > 1:
1) Generate a realization of a random &:
2) Compute a stochastic vector g(w[t] &)
3) Choose a step size ¢ > 0
4) Update wl T !t — ntg(w[t],gt)

Terminate: after 7 iterations, output
T—I—l]}

w° — {wll ... w!

e Here g(w[t],ft) IS an unbiased estimate of subgradient:
Ee, [g(w!, &) | w!"] € OF (w!f)

mostazs Mlnlu 46 A1 Summer Scﬁool‘zmg

Full GD SGD

ostuzs Kinlu 47 A1 Summer School 2019

Strongly Convex Smooth Problems

min F(w) = Ez [f(w; 2)

Assumptions:
e F:R? — R is a-strongly convex and 3-smooth
e Variance of g(w'”, ¢,) is controlled:

Ee [lg(w, O] < 0 + ¢V (w)]?, Vw

Convergence: for fixed step size 7t = 1 = g%g ,

E [F(w[m]) _ F(w*)} < (1 —na)" (F(wl) - F(w®))

Bn 2
+ a20g

mostazs Mlnlu 48 A1 Summer Scﬁool‘zmg

Impact of Noise and Step Sizes

* Fast progress in the beginning.

* Once getting close to the optimum, variation of SG
prevents further progress

 Smaller step sizes give more accurate final answers, but
SGD converges much more slowly

* Go for diminishing step sizes

mostazs IXIRlu 49 A1 Summer Scﬁool‘zmg

Diminishing Step Sizes

* Practical idea: whenever progress slows down, reduce
the step size.

« Balancing the two terms gives an O(r—') convergence:

mostazs Mlnlu 50 A1 Summer School 2019

Objective

A

>

lterate

Whenever progress stalls, we half step sizes and repeat.

mostuzs KXlnlu 51 A1 Summer School 2019

Diminishing Step Sizes

* Practical idea: whenever progress slows down, reduce
the step size.

« Balancing the two terms gives an O(r—') convergence:

Convergence: with diminishing step sizes 7: = (=),

at

E [F(w!l™)) — F(w*)] = O(max{o;, D}a~'77 1)
e A similar 7—! order holds without smoothness.

 Lower bound: for first-order stochastic optimization
problems, the order +—! cannot be improved anymore.

mostazs Ilnlu 52 A1 Summer School 2019

Non-Smooth Problems

* Without smoothness: stochastic subgradient method.

 Convergence guarantee is identical to the deterministic
version (In expectation). Analysis is similar too.

Convergence: suppose the stochastic subgradient is
bounded almost surely (< p), with constant step size 7,

E [F(E[T]) _ F(w*)} < D | 7752 E[T] — %27;1 w!t!

— 2nT

= O(\/Dp?r™ %)

Strong convexity improves the convergence to O(éT—l)

Remark: smoothness does not help improve the order!

mostuzs IXxinlu 53 A1 Summer School 2019

Training Cost Comparison

min, Flw)=2=>" flw,z), weR
fi(w)

Per iteration cost: ©(nd) vs. ©O(d)

Convex, 3-smooth loss function:

« Convexity only: O(DBe 1) xO(nd) Ful GD
O(Dp?e=2)xO(d) SGD
* a-strongly convex: O(rlog(e 1)) xO(nd) Ful GD
O(a te 1) xO(d) SGD

Convex, p-Lipschitz continuous |loss function:
 Not need to compare. SGD is clear winner.

mosTazs MXlnlu 54 A1 Summer School 2019

Training error

A

Full GD

\

SGD

mostass Xlnlu

2

Where does this happen?
Depends on size of data set

29

Time

A7 Summer School 2019

Variability of Stochastic Gradients

E {F(w[TH]) — F(w*)} < (1 —na)"(F(w") — F(w"))

Bn 2
a20g

o SGD with constant step sizes tends to oscillate around

global minimum, since large step sizes cannot suppress
variability in stochastic gradients.

» Key: variability of g(w!*, ¢,), 0. .

« For vanilla SGD in training, g(w!", &) = V fe, (w")
Not negligible even when w!t! = w*

mostuzs IXxinlu 56 A1 Summer School 2019

Variance Reduction

e |nstead of vanilla SGD g(’w[t],ft) < Ve, (’w[t]), use other
kinds of stochastic gradient with smaller variability.

 Minibatch: g(w!!, &) « |£1t| >ice, Vi(w!t)
Minibatch size |t| = nmb, variance reduced by 1/ny, .
Batch size can be dynamic.

 Gradient aggregation: take some zero-mean vl and set
g(w'", &) « Ve, (w!") — v

Still an unbiased estimate of full gradient.
v'Y highly correlated with V f¢, (w!') to reduce variance.
Use past gradient info if current iterate close to past ones

mostazs IXIRlu 57 A1 Summer School 2019

Stochastic Variance Reduced Gradient

Idea: if we can access an previous iterate w°'d, and it is not
so far away from the current iterate w!t! , then pick

_ vf (wold) . VF(wOld)

» Roughly equal to the “bias” of V fe, (w!) if w' ~w
» Correcting V f¢, (w'!) towards VF (w!):

g(w', &) « Vfe, (w!) — (Vfe, (w) — VF(w'9))

~ V fe, (W) = (Vfe, (wl) = VP (wl))
— VF(w'')

old

e |t s also zero-mean.

mostazs Mlnlu 58 A1 Summer Scﬁool‘zmg

SVRG Algorlthm [Johnson and Zhang, 2013]

Run in epochs.

In the s-th epoch:
» Take a snapshot w'“, compute the full gradient VF (w?'?)
* Inner loop: use w°'¢ to reduce variance: for t = 1,...,m

wlt o wlf! = { Ve, (wlh) — (Vfe, () = VF(wg)) |

Note: this is a hybrid approach - full gradient + SG
* Full gradient is computed once every epoch.
* Each epoch contains 2m + n gradient computations

mostazs Mlnlu 59 A1 Summer Scﬁool‘zmg

Summary

* For large-scale ML problems, stochastic methods usually
have advantage over batch methods

e [ypical anecdote: suppress variability of stochastic
gradients by diminishing step sizes
* How to diminish step size depends on problem structures

e Not covered:
> More methods for noise reduction
> Non-convex problems

mostuzs IXxinlu 60 A1 Summer School 2019

Main Reference

SIAM REVIEW (©) 2018 Society for Industrial and Applied Mathematics
Vol. 60, No. 2, pp. 223-31 |

Optimization Methods for
Large-Scale Machine Learning”®

Léon Bottou!
Frank E. Curtis?
Jorge Nocedal®

Abstract. This paper provides a review and commentary on the past, present, and future of numeri-
cal optimization algorithms in the context of machine learning applications. Through case
studies on text classification and the training of deep neural networks, we discuss how op-
timization problems arise in machine learning and what makes them challenging. A major
theme of our study is that large-scale machine learning represents a distinctive setting in
which the stochastic gradient (SG) method has traditionally played a central role while
conventional gradient-based nonlinear optimization techniques typically falter. Based on
this viewpoint, we present a comprehensive theory of a straightforward, yet versatile SG
algorithm, discuss its practical behavior, and highlight opportunities for designing algo-
rithms with improved performance. This leads to a discussion about the next generation
of optimization methods for large-scale machine learning, including an investigation of two
main streams of research on techniques that diminish noise in the stochastic directions and
methods that make use of second-order derivative approximations.

mosTazs IXlnlu 61 A1 Summer School 2019

References

[1] H. Robbins and S. Monro, “A Stochastic Approximation Method,” The Annals of
Mathematical Statistics, vol. 22, no. 3, pp. 400-407, 1951.

[2] L. Bottour, F. E. Curtis, and J. Nocedal, “Optimization Methods for Large-Scale
Machine Learning,” SIAM Review, vol. 60, no. 2, pp. 223-311, 2018.

[3] R.Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive
variance reduction,” NIPS, 2013.

mostuzs IXxinlu 62 A1 Summer School 2019

