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About Myself

• Research Interests
Computer Vision, Machine Learning, Deep Learning, Artificial Intelligence

• Education
• PhD in ECE, Carnegie Mellon University, 2004 – 2009 
• MS in ECE, Carnegie Mellon University, 2002 – 2004 
• BS in EE, National Taiwan University, 1997 – 2001 

• Work Experience
• Associate Professor 2017 – present 

GICE/EE, National Taiwan University
• Deputy Director 2015 – 2017

Research Center for IT Innovation (CITI), Academia Sinica
• Associate Research Fellow 2013 – 2017

CITI, Academia Sinica
• Assistant Research Fellow 2009 – 2013

CITI, Academia Sinica
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About Myself (cont’d)

• Selected Honors & Awards
• Outstanding Young Researcher

Ministry of Science & Technology
2017-2019, 2013-2015

• Nominated for Best Paper Awards
IEEE AVSS 2015, IEEE ICME 2013

• [2017/12] 1st Place Award
MOST Workshop on Generative Adversarial Networks & Project Competition

• [2018/05] 2nd Place Award
NVIDIA GTC Taiwan 2018, Research Presentation

• [2018/06] 2nd Place Award
CVPR 2018 Challenge on DeepGlobe (by Facebook & DigitalGlobe)
• 1st Place Award by Sensetime
• Other teams are from MIT, Univ. Maryland, etc.
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About Myself (cont’d)

• Industrial Collaboration
• Collaborators:

• Remarks/Recognition
• “9 startups to watch”, Alibaba Entrepreneurs Fund, 2017
• “10 coolest tech startups in Taiwan”, MOST, 2018
• “Top 9 AI startups in Taiwan”, Crunchbase, 2019
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What Will Be Covered in Today’s Lecture?

• Brief Review to CV/ML Backgrounds
• Recent Advances in Deep Learning for Computer Vision

• Transfer Learning and Its Applications to Image Analysis and Synthesis
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Computer Vision: What, When, and Why

• Remarks
• Give machines visual perception
• Learning for visual data
• In addition to Machine Learning, computer vision is closely related to 

Image Processing, Computer Graphics, Computational Photography, etc.
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Learning from Visual Data

• Computer Vision
• Learning from visual data; give machines visual perception
• In addition to Machine Learning, computer vision is closely related to 

Image Processing, Computer Graphics, Computational Photography, etc.

Where is this
picture taken?

How many people 
are there?

What are people 
doing?

What object is the 
guy standing on?

Why is this 
picture funny?
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Learning from Visual Data (cont’d)

• Existing CV Applications
• Biometrics (e.g., face, iris, gait recognition)
• Optical character recognition (OCR)
• Sports (tennis, football, basketball, etc.)
And many more…
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From Computer Vision to Artificial Intelligence

• Coming AI+CV Applications
• Virtual/augmented reality (VR/AR)
• Automated optical inspection (AOI)
• Self-driving car
• Industrial robots
• Medical imaging
And increasingly more than we can imagine!
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Style Transfer

EverFilter
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http://saveurl.clickme.net/27349


Style Transfer
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More Examples for Style Transfer

13Abduzeedo.com



Take Visual Classification for Example
• Linear Classifier as the Learning Model

• Can be viewed as a parametric approach. Why?
• Assuming that we need to recognize 10 object categories of interest
• E.g., CIFAR10 with 50K training & 10K test images of 10 categories.

And, each image is of size 32 x 32 x 3 pixels.
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• Linear Classifier as the Learning Model (cont’d)
• Can be viewed as a parametric approach. Why?
• Assuming that we need to recognize 10 object categories of interest (e.g., CIFAR10).
• Let’s take the input image as x, and the linear classifier as W. 
• We hope to see that y = Wx + b as a 10-dimensional output, in which each entry 

indicates the score of the associated class.

15Image credit: Stanford CS231n

y = 



• Linear Classifier as the Learning Model (cont’d)
• Take an image with 2 x 2 pixels & 3 classes of interest as example.
• We need to learn a linear classifier W (with a bias b),

so that a set of desirable outputs y = Wx + b can be expected. 

16Image credit: Stanford CS231n



Some Remarks

• Interpreting the classifier W
• The weights in W are trained by observing training data X and their ground truth Y.
• Each column in W can be viewed as an “exemplar” of the corresponding class.
• Thus, Wx basically performs inner product (or correlation) 

between the “input x” and the “exemplar of each class”.

17
Image credit: Stanford CS231n



• From Linear to Non-Linear Classifiers
• Starting points for complex/nonlinear classifiers
• How to determine a proper loss function for matching y and Wx+b, followed 

by the learning of W (including b), are the keys to the success of ML models.

18Image credit: Stanford CS231n

Some Remarks (cont’d)



(A Very Quick) Intro to Neural Networks & CNN

• Neural Network & Multilayer Perceptron
• Convolutional Neural Networks

19



Biological neuron and Perceptrons

A biological neuron An artificial neuron (Perceptron) 
- a linear classifier
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Hierarchical Learning

• Successive model layers learn deeper intermediate representations.
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Multi-Layer Perceptron: A Nonlinear Classifier
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Multi-Layer Perceptron: A Nonlinear Classifier (cont’d)
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Multi-Layer Perceptron: A Nonlinear Classifier (cont’d)
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Supervised Learning for Visual Classification

• General framework

LAB Histogram?

Texton?

Bag of Words?

HOG?

xx
x x

x

x

x

x
x

o
o

o
o

o
= Category

label

Image Data Image Features Classifier+ +
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Supervised Learning for Visual Classification

• Training vs. Testing Phases

Training Images

Classifier 
Training

Training

Image Features

Image Features

Testing

Test Image

Trained 
Classifier

“Outdoor”

PredictionTrained 
Classifier

Image Labels
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What Are the Right Features?

• Depending on the task of interest!
• Possible choices

• Object: shape
• Local shape info, shading, shadows, texture

• Scene : geometric layout
• linear perspective, gradients, line segments

• Material properties: albedo, feel, hardness
• Color, texture

• Action: motion
• Optical flow, tracked points
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(A Very Quick) Intro to Neural Networks & CNN

• Neural Network & Multilayer Perceptron
• Convolutional Neural Networks
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Convolutional Neural Networks

• How many weights for MLPs for images?
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Convolutional Neural Networks

• Property I of CNN: Local Connectivity
• Each neuron takes info only from a neighborhood of pixels.
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Convolutional Neural Networks

• Property II of CNN: Weight Sharing
• Neurons connecting all neighborhoods have identical weights.
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• # input units (neurons): 7
• # hidden units: 3
• Number of parameters

• Global connectivity:
• Local connectivity:

Input layer

Hidden layer

Global connectivity Local connectivity

CNN: Local Connectivity
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Input layer

Hidden layer

• # input units (neurons): 7
• # hidden units: 3
• Number of parameters

– Without weight sharing:
– With weight sharing :

w1

w2

w3

w4

w5
w6

w7

w8

w9

Without weight sharing With weight sharing

w1

w2

w3 w1

w2

w3

w1

w2

w3

CNN: Weight Sharing
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Input layer

Hidden layer

Single input channel Multiple input channels

Channel 2

Channel 1

Filter weights Filter weights

CNN with Multiple Input Channels
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Input layer

Hidden layer

Single output map Multiple output maps

Filter weights

Map 1

Map 2

Filter 1 Filter 2

Filter weights

CNN with Multiple Output Maps
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Putting them together

• Local connectivity
• Weight sharing
• Handling multiple input channels
• Handling multiple output maps

Image credit: A. Karpathy

# output (activation) maps # input channels

Local connectivity

Weight sharing

36



LeNet [LeCun et al. 1998]

Gradient-based learning applied to document 
recognition [LeCun, Bottou, Bengio, Haffner 1998] LeNet-1 from 1993 37

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf





Convolution Layer in CNN
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What is a Convolution?

• Weighted moving sum

Input Feature Activation Map

.

.

.

slide credit: S. Lazebnik
39



What is a Convolution?
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Putting them together (cont’d)

• The brain/neuron view of CONV layer
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Putting them together (cont’d)

• The brain/neuron view of CONV layer
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Putting them together (cont’d)

• The brain/neuron view of CONV layer
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Putting them together (cont’d)

• Image input with 32 x 32 pixels convolved repeatedly with 5 x 5 x 3 
filters shrinks volumes spatially (32 -> 28 -> 24 -> …).
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What is a Convolution?

• Zero Padding
• Output is the same size as input (doesn’t shrink as the network gets deeper).
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What is a Convolution?

• Stride
• Step size across signals
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What is a Convolution?

• Stride
• Step size across signals
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Nonlinearity Layer in CNN
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Nonlinearity Layer
• E.g., ReLU (Rectified Linear Unit)

• Pixel by pixel computation of max(0, x)
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Nonlinearity Layer
• E.g., ReLU (Rectified Linear Unit)

• Pixel by pixel computation of max(0, x)
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Nonlinearity Layer
• E.g., ReLU (Rectified Linear Unit)

• Pixel by pixel computation of max(0, x)
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Pooling Layer in CNN
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Pooling Layer
• Makes the representations smaller and more manageable 
• Operates over each activation map independently

• E.g., Max Pooling
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Pooling Layer
• Reduces the spatial size and provides spatial invariance
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• Example
• Nonlinearity by ReLU
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• Example
• Max pooling
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Fully Connected (FC) Layer in CNN

57



FC Layer
• Contains neurons that connect to the entire input volume, 

as in ordinary neural networks
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FC Layer
• Contains neurons that connect to the entire input volume, 

as in ordinary neural networks
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CNN
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What Will Be Covered in Today’s Lecture?

• Brief Review to CV/ML Backgrounds
• Recent Advances in Deep Learning for Computer Vision

• Transfer Learning and Its Applications to Image Analysis and Synthesis
• Beyond Transfer Learning: Representation Disentanglement*

61*: if time permits



Revisit of CNN
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Transfer Learning: What, When, and Why?

• What is Transfer Learning?
• “Transfer learning is a research problem in machine learning that

focuses on storing knowledge gained while solving one problem and
applying it to a different but related problem.” – Wikipedia

• What is the common assumption in Machine Learning?
• Training data (typically annotated) would be available.
• Training and test data are drawn from the same feature space and

with the same distribution.
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(Traditional) Machine Learning vs. Transfer Learning

• Machine Learning
• Collecting/annotating data is typically expensive.

64
*Image Courtesy: Andrej Karpathy



Why You Should Know Transfer Learning?
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Transfer Learning: What, When, and Why? (cont’d)

• Examples #2

66
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Why You Should Know Transfer Learning?

67

https://techcrunch.com/2017/02/08/udacity-open-sources-its-self-driving-car-simulator-for-anyone-to-use/
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• Beyond standard classification, we might need to address
image translation/manipulation/style transfer tasks.
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• More image translation/manipulation/style transfer tasks

69Zhu et al. "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks." CVPR 2017.



Revisit of Transfer Learning

70

Transfer 
Learning

Multi-task 
Learning

Transductive
Transfer Learning

Unsupervised 
Transfer Learning

Inductive Transfer 
Learning

Domain 
Adaptation

Sample Selection Bias 
/Covariance Shift

Self-taught 
Learning

Labeled data are available in 
a target domain

Labeled data are 
available only in a 
source domain

No labeled data in 
both source and 
target domain

No labeled data in a source domain

Labeled data are available in a source domain

Case 1

Case 2
Source and 
target tasks are 
learnt 
simultaneously

Different 
domains but 
single task

Assumption: single domain 
and single task

S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE TKDE, 2010.



Domain Adaptation

• What’s DA?
• Leveraging info from one or more source domains, 

so that the same learning task in the target domain can be addressed.
• Typically all the source-domain data are labeled.

• Settings
• Semi-supervised DA: few target-domain data are with labels.
• Unsupervised DA: no label info available in the target-domain.

(shall we address supervised DA?)
• Imbalanced DA: fewer classes of interest in the target domain
• Homogeneous vs. heterogeneous DA

71



Deep Feature is Sufficiently Promising.

• DeCAF
• Leveraging an auxiliary large dataset to train CNN.
• The resulting features exhibit sufficient representation ability.
• Supporting results on Office+Caltech datasets, etc.

72Donahue et al., DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, ICML 2014



Deep Feature is Sufficiently Promising.

• DeCAF
• Leveraging an auxiliary large dataset to train CNN.
• The resulting features exhibit sufficient representation ability.
• Supporting results on Office+Caltech, etc. object image datasets

73Donahue et al., DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, ICML 2014



Recent Deep Learning Methods for TL

• Deep Domain Confusion (DDC)
• Domain-Adversarial Training of Neural Networks (DANN)

• Adversarial Discriminative Domain Adaptation (ADDA)
• Domain Separation Network (DSN) 
• Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial 

Networks (PixelDA)

• No More Discrimination: Cross City Adaptation of Road Scene Segmenters

74

Shared weights Adaptation loss Generative model

DDC ✓ MMD ✘

DANN ✓ Adversarial ✘

ADDA ✘ Adversarial ✘

DSN Partially shared MMD/Adversarial ✘

PixelDA ✘ Adversarial ✓



Deep Domain Confusion (DDC)

• Deep Domain Confusion: Maximizing for Domain Invariance
• Tzeng et al., arXiv: 1412.3474, 2014
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Deep Domain Confusion (DDC)

76

shared
weights

✓Minimize classification loss:



Deep Domain Confusion (DDC)

• Simultaneous Deep Transfer Across Domains and Tasks
• Tzeng et al., ICCV, 2015
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Deep Domain Confusion (DDC)

• Simultaneous Deep Transfer Across Domains and Tasks
• Tzeng et al., ICCV, 2015
• Soft label loss is additionally introduced.
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Domain Confusion by Domain-Adversarial Training

• Domain-Adversarial Training of Neural Networks (DANN)
• Y. Ganin et al., ICML 2015
• Maximize domain confusion = maximize domain classification loss
• Minimize source-domain data classification loss

79



Domain Confusion by Domain-Adversarial Training

• Adversarial Discriminative Domain Adaptation
• Tzeng et al., CVPR 2017
• Maximize domain confusion = maximize domain classification loss
• Minimize source-domain data classification loss
• Compared to DANN, a distinct decoder for the target domain is considered.

Not shared weights

80



Beyond Domain Confusion

• Domain Separation Network
• Bousmalis et al., NIPS 2016
• Separate encoders for domain-invariant and domain-specific features

81



Beyond Domain Confusion

• Domain Separation Network, NIPS 2016
• Example results

32

Source-domain 
image Xs

Reconstruct private + shared features
D(Ec(xs)+Ep(xs))

Reconstruct shared feature only D(Ec(xs))

Reconstruct private feature D(Ep(xs))

Target-domain 
image XT



Beyond Domain Confusion

• Domain Separation Network, NIPS 2016
• Example results

32

Reconstruct private + shared features
D(Ec(xs)+Ep(xs))

Reconstruct shared feature only D(Ec(xT))

Reconstruct private feature D(Ep(xT))

Source-domain 
image Xs

Target-domain 
image XT



Semantic Segmentation Across Cities

• No More Discrimination: Cross City Adaptation of Road Scene Segmenters
• Chen et al., ICCV 2017
• Weakly supervised DA for semantic segmentation

84
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Semantic Segmentation Across Cities

• No More Discrimination: Cross City Adaptation of Road Scene Segmenters
• Chen et al., ICCV 2017
• Weakly supervised DA for semantic segmentation

85

Task: Pixel-level classification



Semantic Segmentation Across Cities

• No More Discrimination: Cross City Adaptation of Road Scene Segmenters
• Chen et al., ICCV 2017
• Weakly supervised DA for semantic segmentation

86

Class-wise 
Domain difference

How to get class labels in target domain?

Time Machine 
Static-object 

Prior



Semantic Segmentation Across Cities

• No More Discrimination: Cross City Adaptation of Road Scene Segmenters
• Chen et al., ICCV 2017
• Weakly supervised DA for semantic segmentation
• Static-object prior from Google Map Time Machine features

87

2015

2016

SuperpixelDense Match Static classes



Semantic Segmentation Across Cities

• No More Discrimination: Cross City Adaptation of Road Scene Segmenters
• Chen et al., ICCV 2017
• Weakly supervised DA for semantic segmentation
• Static-object prior from Google Map Time Machine features

88



Semantic Segmentation Across Cities

• No More Discrimination: Cross City Adaptation of Road Scene Segmenters
• Chen et al., ICCV 2017
• Weakly supervised DA for semantic segmentation
• Static-object prior from Google Map Time Machine features
• Qualitative example results
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Transfer Learning for Manipulating Data?

• TL not only addresses cross-domain classification tasks.
• Let’s see how we can synthesize and manipulate data across domains.

• As a computer vision guy, let’s focus on visual data in this lecture…

90
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What to Cover?

• Cross-Domain Image Translation
• Pix2pix (CVPR’17)
• CycleGAN (ICCV’17), DualGAN (ICCV’17), DiscoGAN (ICML’17)
• UNIT (NIPS’17)
• DTN (ICLR’17)
• Beyond image translation

91



What to Cover in Transfer Learning?

• Cross-Domain Image Translation
• Pix2pix (CVPR’17): Pairwise cross-domain training data
• CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
• UNIT (NIPS’17): Learning cross-domain image representation (with unpaired training data)
• DTN (ICLR’17) : Learning cross-domain image representation (with unpaired training data)
• Beyond image translation
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A Super Brief Review for
Generative Adversarial Networks (GAN)
• Architecture of GAN

• Loss:

93Goodfellow et al., Generative Adversarial Nets, NIPS, 2014

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 𝐺𝐺,𝐷𝐷 = 𝔼𝔼 log 1 − 𝐷𝐷 (𝐺𝐺(𝑥𝑥)) + 𝔼𝔼 log𝐷𝐷 𝑦𝑦

x

y



Pix2pix

• Image-to-image translation with conditional adversarial networks (CVPR’17)
• Can be viewed as image style transfer

94

Sketch Photo

Isola et al. " Image-to-image translation with conditional adversarial networks." CVPR 2017.



Pix2pix
• Goal / Problem Setting

• Image translation across two distinct domains (e.g., sketch v.s. photo)

• Pairwise training data

• Method: Conditional GAN
• Example: Sketch to Photo

• Generator
Input: Sketch
Output: Photo

• Discriminator
Input: Concatenation of Input(Sketch) 
& Synthesized/Real(Photo) images
Output: Real or Fake

95

Testing Phase

GeneratedInput

Input

Concat

Concat

Training Phase

Input

real

Isola et al. " Image-to-image translation with conditional adversarial networks." CVPR 2017.



Pix2pix
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• Learning the model

GeneratedInput

Input

Concat

Training Phase

Concat

Input

Real

ℒ𝑐𝑐𝐺𝐺𝐺𝐺𝐺𝐺(G, D) = 𝔼𝔼 𝑥𝑥 log 1 − D(𝑥𝑥, G(𝑥𝑥)) + 𝔼𝔼 𝑥𝑥,𝑦𝑦 log D 𝑥𝑥,𝑦𝑦
Fake (Generated) Real

Concatenate Concatenate

ℒ𝐿𝐿𝐿(G) = 𝔼𝔼 𝑥𝑥,𝑦𝑦 𝑦𝑦 − G(𝑥𝑥) 𝐿

Reconstruction Loss

Conditional GAN loss

Overall objective function
G∗ = arg min

G
max
D

ℒ𝑐𝑐𝐺𝐺𝐺𝐺𝐺𝐺 G, D + ℒ𝐿𝐿𝐿(G)

Isola et al. " Image-to-image translation with conditional adversarial networks." CVPR 2017.



Pix2pix
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• Experiment results

Demo page: https://affinelayer.com/pixsrv/

Isola et al. " Image-to-image translation with conditional adversarial networks." CVPR 2017.

https://affinelayer.com/pixsrv/


What to Cover?

• Cross-Domain Image Translation
• Pix2pix (CVPR’17): Pairwise cross-domain training data
• CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
• UNIT (NIPS’17): Learning cross-domain image representation (with unpaired training data)
• DTN (ICLR’17) : Learning cross-domain image representation (with unpaired training data)
• Beyond image translation

• Representation Disentanglement
• InfoGAN & AC-GAN: Representation disentanglement in a single domain
• StarGAN (CVPR’18) : Image translation via representation disentanglement
• CDRD (CVPR’18) : Cross-domain representation disentanglement and translation

98



CycleGAN/DiscoGAN/DualGAN

• CycleGAN (CVPR’17)
• Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial 

Networks -to-image translation with conditional adversarial networks

99Zhu et al. "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks." CVPR 2017.

• Easier to collect training data

• More practical

Paired Unpaired

1-to-1 
Correspondence

No 
Correspondence



CycleGAN

100Zhu et al. "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks." CVPR 2017.

• Goal / Problem Setting
• Image translation across two distinct domains 
• Unpaired training data

• Idea
• Autoencoding-like image translation
• Cycle consistency between two domains 

Photo Painting
Unpaired

Cycle Consistency

Photo Painting Photo

Training data

Painting Photo Painting

Cycle Consistency



CycleGAN

101Zhu et al. "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks." CVPR 2017.

• Method (Example: Photo & Painting)

• Based on 2 GANs
• First GAN      (G1, D1):  Photo to Painting
• Second GAN (G2, D2):  Painting to Photo

• Cycle Consistency
• Photo consistency
• Painting consistency

Photo
(Input)

Painting
(Generated)

G1

D1

Painting
(Real)

or Real / Fake

Photo
(Generated)

Painting
(Input)

G2

D2
or Real / Fake

Photo
(Real)



CycleGAN

102Zhu et al. "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks." CVPR 2017.

• Method (Example: Photo vs. Painting)

• Based on 2 GANs
• First GAN      (G1, D1):  Photo to Painting
• Second GAN (G2, D2):  Photo to Painting

• Cycle Consistency
• Photo consistency
• Painting consistency

Photo Consistency

Photo Painting Photo
G1 G2

Painting Photo Painting

Painting Consistency

G1G2



CycleGAN

103Zhu et al. "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks." CVPR 2017.

• Learning

• Adversarial Loss
• First GAN (G1, D1):

• Second GAN (G2, D2):

Overall objective function
G𝐿∗ , G2∗ = arg min

G1,G2
max
D1,D2

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G𝐿, D𝐿 + ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G2, D2 + ℒ𝑐𝑐𝑦𝑦𝑐𝑐 G𝐿, G2
First GAN Second GAN

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G𝐿, D𝐿 = 𝔼𝔼 log 1 − D𝐿(G𝐿(𝑥𝑥)) + 𝔼𝔼 log D𝐿 𝑦𝑦

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G2, D2 = 𝔼𝔼 log 1 − D2(G2(𝑦𝑦)) + 𝔼𝔼 log D2 𝑥𝑥

Photo
(Input)

Painting
(Generated)

G1

D1

Painting
(Real)

or

Real/ Fake

Photo
(Generated)

Painting
(Input)

G2

D2
or Real/ Fake

Photo
(Real)

𝑥𝑥 G𝐿(𝑥𝑥)

𝑦𝑦

𝑦𝑦 G2(𝑦𝑦)

𝑥𝑥



CycleGAN

104Zhu et al. "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks." CVPR 2017.

• Learning

• Consistency Loss
• Photo and Painting consistency

Overall objective function
G𝐿∗ , G2∗ = arg min

G1,G2
max
D1,D2

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G𝐿, D𝐿 + ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G2, D2 + ℒ𝑐𝑐𝑦𝑦𝑐𝑐 G𝐿, G2
Cycle Consistency

ℒ𝑐𝑐𝑦𝑦𝑐𝑐 G𝐿, G2 = 𝔼𝔼 G2 G𝐿 𝑥𝑥 − 𝑥𝑥 𝐿 + G𝐿 G2 𝑦𝑦 − 𝑦𝑦 𝐿

Photo Consistency

Photo Painting Photo

G1 G2
𝑥𝑥 G𝐿 𝑥𝑥 G2 G𝐿 𝑥𝑥

Painting Photo Painting

Painting Consistency

G1G2
𝑦𝑦 G2 𝑦𝑦 G𝐿 G2 𝑦𝑦



CycleGAN

105Zhu et al. "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks." CVPR 2017.

• Example results

Project Page: https://junyanz.github.io/CycleGAN/

https://junyanz.github.io/CycleGAN/


Image Translation Using Unpaired Training Data

106

Zhu et al. "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks." CVPR 2017.
Kim et al. "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks.“, ICML 2017

Yi, Zili, et al. "Dualgan: Unsupervised dual learning for image-to-image translation." ICCV 2017

• CycleGAN, DiscoGAN, and DualGAN

CycleGAN
ICCV’17

DiscoGAN
ICML’17

DualGAN
ICCV’17



What to Cover in Transfer Learning?

• Cross-Domain Image Translation
• Pix2pix (CVPR’17): Pairwise cross-domain training data
• CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
• UNIT (NIPS’17): Learning cross-domain image representation (with unpaired training data)
• DTN (ICLR’17) : Learning cross-domain image representation (with unpaired training data)

• Representation Disentanglement
• InfoGAN & AC-GAN: Representation disentanglement in a single domain
• StarGAN (CVPR’18) : Image translation via representation disentanglement
• CDRD (CVPR’18) : Cross-domain representation disentanglement and translation

107



UNIT

• Unsupervised Image-to-Image Translation Networks (NIPS’17)
• Image translation via learning cross-domain joint representation

108Liu et al., "Unsupervised image-to-image translation networks.“, NIPS 2017

𝑥𝑥𝐿
𝑥𝑥2

𝑧𝑧
𝒵𝒵: Joint latent space

𝒳𝒳𝐿 𝒳𝒳2

𝑥𝑥𝐿
𝑥𝑥2

𝑧𝑧
𝒵𝒵: Joint latent space

𝒳𝒳𝐿 𝒳𝒳2

Stage1: Encode to the joint space Stage2: Generate cross-domain images 

Day Night Day Night



UNIT

• Goal/Problem Setting
• Image translation 

across two distinct domains
• Unpaired training image data

• Idea
• Based on two parallel VAE-GAN models

109Liu et al., "Unsupervised image-to-image translation networks.“, NIPS 2017

VAE GAN



UNIT

• Goal/Problem Setting
• Image translation 

across two distinct domains
• Unpaired training image data

• Idea
• Based on two parallel VAE-GAN models
• Learning of joint representation 

across image domains

110Liu et al., "Unsupervised image-to-image translation networks.“, NIPS 2017



UNIT

• Goal/Problem Setting
• Image translation 

across two distinct domains
• Unpaired training image data

• Idea
• Based on two parallel VAE-GAN models
• Learning of joint representation 

across image domains
• Generate cross-domain images

from joint representation

111Liu et al., "Unsupervised image-to-image translation networks.“, NIPS 2017



Variation Autoencoder Loss

• Learning

112

Overall objective function
G∗ = arg min

G
max
D

ℒ𝑉𝑉𝐺𝐺𝑉𝑉 E𝐿, G𝐿, E2, G2 + ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G𝐿, D𝐿, G2, D2

ℒ𝑉𝑉𝐺𝐺𝑉𝑉 E𝐿, G𝐿, E2, G2 = 𝔼𝔼 G𝐿 E𝐿 𝑥𝑥𝐿 − 𝑥𝑥𝐿 2 + 𝔼𝔼 𝒦𝒦ℒ(𝑞𝑞𝐿(𝑧𝑧)||𝑝𝑝(𝑧𝑧))
𝔼𝔼 G2 E2 𝑥𝑥2 − 𝑥𝑥2 2 + 𝔼𝔼 𝒦𝒦ℒ(𝑞𝑞2(𝑧𝑧)||𝑝𝑝(𝑧𝑧))

VAE
G𝐿E𝐿 D𝐿

E2 G2 D2

Adversarial Loss
ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G𝐿, D𝐿, G2, D2 = 𝔼𝔼 log 1 − D𝐿(G𝐿(𝑧𝑧) + 𝔼𝔼 log D𝐿 𝑦𝑦𝐿

𝔼𝔼 log 1 − D2(G2(𝑧𝑧) + 𝔼𝔼 log D2 𝑦𝑦2

G𝐿(𝑧𝑧)

G2(𝑧𝑧)

GAN

Variation Autoencoder Adversarial

UNIT



ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G𝐿, D𝐿, G2, D2 = 𝔼𝔼 log 1 − D𝐿(G𝐿(𝑧𝑧) + 𝔼𝔼 log D𝐿 𝑦𝑦𝐿
𝔼𝔼 log 1 − D2(G2(𝑧𝑧) + 𝔼𝔼 log D2 𝑦𝑦2

Variation Autoencoder Loss

• Learning
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Overall objective function
G = arg min

G
max
D

ℒ𝑉𝑉𝐺𝐺𝑉𝑉 E𝐿, G𝐿, E2, G2 + ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G𝐿, D𝐿, G2, D2

ℒ𝑉𝑉𝐺𝐺𝑉𝑉 E𝐿, G𝐿, E2, G2 = 𝔼𝔼 G𝐿 E𝐿 𝑥𝑥𝐿 − 𝑥𝑥𝐿 2 + 𝔼𝔼 𝒦𝒦ℒ(𝑞𝑞𝐿(𝑧𝑧)||𝑝𝑝(𝑧𝑧))

𝔼𝔼 G2 E2 𝑥𝑥2 − 𝑥𝑥2 2 + 𝔼𝔼 𝒦𝒦ℒ(𝑞𝑞2(𝑧𝑧)||𝑝𝑝(𝑧𝑧))

VAE
G𝐿E𝐿 D𝐿

E2 G2 D2

Adversarial Loss

G𝐿 E𝐿 𝑥𝑥𝐿

G2 E2 𝑥𝑥2

Reconstruction

UNIT



ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G𝐿, D𝐿, G2, D2 = 𝔼𝔼 log 1 − D𝐿(G𝐿(𝑧𝑧) + 𝔼𝔼 log D𝐿 𝑦𝑦𝐿
𝔼𝔼 log 1 − D2(G2(𝑧𝑧) + 𝔼𝔼 log D2 𝑦𝑦2

Variation Autoencoder Loss

• Learning
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Overall objective function
G = arg min

G
max
D

ℒ𝑉𝑉𝐺𝐺𝑉𝑉 E𝐿, G𝐿, E2, G2 + ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G𝐿, D𝐿, G2, D2

ℒ𝑉𝑉𝐺𝐺𝑉𝑉 E𝐿, G𝐿, E2, G2 = 𝔼𝔼 G𝐿 E𝐿 𝑥𝑥𝐿 − 𝑥𝑥𝐿 2 + 𝔼𝔼 𝒦𝒦ℒ(𝑞𝑞𝐿(𝑧𝑧)||𝑝𝑝(𝑧𝑧))

𝔼𝔼 G2 E2 𝑥𝑥2 − 𝑥𝑥2 2 + 𝔼𝔼 𝒦𝒦ℒ(𝑞𝑞2(𝑧𝑧)||𝑝𝑝(𝑧𝑧))

VAE
G𝐿E𝐿 D𝐿

E2 G2 D2

Adversarial Loss

G𝐿 E𝐿 𝑥𝑥𝐿

G2 E2 𝑥𝑥2

Prior Loss

UNIT



Variation Autoencoder Loss

• Learning
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Overall objective function
G = arg min

G
max
D

ℒ𝑉𝑉𝐺𝐺𝑉𝑉 E𝐿, G𝐿, E2, G2 + ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G𝐿, D𝐿, G2, D2

ℒ𝑉𝑉𝐺𝐺𝑉𝑉 E𝐿, G𝐿, E2, G2 = 𝔼𝔼 G𝐿 E𝐿 𝑥𝑥𝐿 − 𝑥𝑥𝐿 2 + 𝔼𝔼 𝒦𝒦ℒ(𝑞𝑞𝐿(𝑧𝑧)||𝑝𝑝(𝑧𝑧))
𝔼𝔼 G2 E2 𝑥𝑥2 − 𝑥𝑥2 2 + 𝔼𝔼 𝒦𝒦ℒ(𝑞𝑞2(𝑧𝑧)||𝑝𝑝(𝑧𝑧))

G𝐿E𝐿 D𝐿

E2 G2 D2

Adversarial Loss
ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G𝐿, D𝐿, G2, D2 = 𝔼𝔼 log 1 − D𝐿(G𝐿(𝑧𝑧) + 𝔼𝔼 log D𝐿 𝑦𝑦𝐿

𝔼𝔼 log 1 − D2(G2(𝑧𝑧) + 𝔼𝔼 log D2 𝑦𝑦2

G𝐿(𝑧𝑧)

G2(𝑧𝑧)

GAN

Generated

𝑦𝑦𝐿

𝑦𝑦2

UNIT



Variation Autoencoder Loss

• Learning
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Overall objective function
G = arg min

G
max
D

ℒ𝑉𝑉𝐺𝐺𝑉𝑉 E𝐿, G𝐿, E2, G2 + ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G𝐿, D𝐿, G2, D2

ℒ𝑉𝑉𝐺𝐺𝑉𝑉 E𝐿, G𝐿, E2, G2 = 𝔼𝔼 G𝐿 E𝐿 𝑥𝑥𝐿 − 𝑥𝑥𝐿 2 + 𝔼𝔼 𝒦𝒦ℒ(𝑞𝑞𝐿(𝑧𝑧)||𝑝𝑝(𝑧𝑧))
𝔼𝔼 G2 E2 𝑥𝑥2 − 𝑥𝑥2 2 + 𝔼𝔼 𝒦𝒦ℒ(𝑞𝑞2(𝑧𝑧)||𝑝𝑝(𝑧𝑧))

E𝐿

E2

Adversarial Loss
ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G𝐿, D𝐿, G2, D2 = 𝔼𝔼 log 1 − D𝐿(G𝐿(𝑧𝑧) + 𝔼𝔼 log D𝐿 𝑦𝑦𝐿

𝔼𝔼 log 1 − D2(G2(𝑧𝑧) + 𝔼𝔼 log D2 𝑦𝑦2
Real

G𝐿 D𝐿

G2 D2

G𝐿(𝑧𝑧)

G2(𝑧𝑧)

GAN
𝑦𝑦𝐿

𝑦𝑦2
Real

Real

UNIT



UNIT
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• Example results

Liu et al., "Unsupervised image-to-image translation networks.“, NIPS 2017

Sunny → Rainy

Rainy → Sunny

Real Street-view → Synthetic Street-view 

Synthetic Street-view → Real Street-view 

Github Page: https://github.com/mingyuliutw/UNIT

https://github.com/mingyuliutw/UNIT


What to Cover?

• Cross-Domain Image Translation
• Pix2pix (CVPR’17): Pairwise cross-domain training data
• CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
• UNIT (NIPS’17): Learning cross-domain image representation (with unpaired training data)
• DTN (ICLR’17) : Learning cross-domain image representation (with unpaired training data)

• Representation Disentanglement
• InfoGAN & AC-GAN: Representation disentanglement in a single domain
• StarGAN (CVPR’18) : Image translation via representation disentanglement
• CDRD (CVPR’18) : Cross-domain representation disentanglement and translation

• Final Remarks

118



Domain Transfer Networks

• Unsupervised Cross-Domain Image Generation (ICLR’17)
• Goal/Problem Setting

• Image translation across two domains
• One-way only translation
• Unpaired training data

• Idea 
• Apply unified model to learn

joint representation across domains.

119Taigman et al., "Unsupervised cross-domain image generation.“, ICLR 2016



Domain Transfer Networks

• Unsupervised Cross-Domain Image Generation (ICLR’17)
• Goal/Problem Setting

• Image translation across two domains
• One-way only translation
• Unpaired training data

• Idea 
• Apply unified model to learn

joint representation across domains.
• Consistency observed in image and feature spaces

120Taigman et al., "Unsupervised cross-domain image generation.“, ICLR 2016

Image consistency

feature consistency
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• Learning
• Unified model to translate across domains 

• Consistency of feature and image space

• Adversarial loss

G∗ = arg min
G

max
D

ℒ𝑖𝑖𝑖𝑖𝑖𝑖 G + ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 G + ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D

ℒ𝑖𝑖𝑖𝑖𝑖𝑖 G = 𝔼𝔼 𝑔𝑔 𝑓𝑓 𝑦𝑦 − 𝑦𝑦 2

ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 G = 𝔼𝔼 𝑓𝑓(𝑔𝑔 𝑓𝑓 𝑥𝑥 ) − 𝑓𝑓(𝑥𝑥) 2

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D = 𝔼𝔼 log 1 − D(G(𝑥𝑥) + 𝔼𝔼 log 1 − D(G(𝑦𝑦) + 𝔼𝔼 log D 𝑦𝑦

G D

Domain Transfer Networks
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• Learning
• Unified model to translate across domains 

• Consistency of image and feature space

• Adversarial loss

G∗ = arg min
G

max
D

ℒ𝑖𝑖𝑖𝑖𝑖𝑖 G + ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 G + ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D

ℒ𝑖𝑖𝑖𝑖𝑖𝑖 G = 𝔼𝔼 𝑔𝑔 𝑓𝑓 𝑦𝑦 − 𝑦𝑦 2

ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 G = 𝔼𝔼 𝑓𝑓(𝑔𝑔 𝑓𝑓 𝑥𝑥 ) − 𝑓𝑓(𝑥𝑥) 2

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D = 𝔼𝔼 log 1 − D(G(𝑥𝑥) + 𝔼𝔼 log 1 − D(G(𝑦𝑦) + 𝔼𝔼 log D 𝑦𝑦

𝑦𝑦

𝑥𝑥

G D

Image consistency

feature consistency

G = {𝑓𝑓,𝑔𝑔}

Domain Transfer Networks
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• Learning
• Unified model to translate across domains 

• Consistency of feature and image space

• Adversarial loss

G∗ = arg min
G

max
D

ℒ𝑖𝑖𝑖𝑖𝑖𝑖 G + ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 G + ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D

ℒ𝑖𝑖𝑖𝑖𝑖𝑖 G = 𝔼𝔼 𝑔𝑔 𝑓𝑓 𝑦𝑦 − 𝑦𝑦 2

ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 G = 𝔼𝔼 𝑓𝑓(𝑔𝑔 𝑓𝑓 𝑥𝑥 ) − 𝑓𝑓(𝑥𝑥) 2

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D = 𝔼𝔼 log 1 − D(G(𝑥𝑥) + 𝔼𝔼 log 1 − D(G(𝑦𝑦) + 𝔼𝔼 log D 𝑦𝑦

𝑦𝑦

𝑥𝑥

G DG(𝑦𝑦)

G(𝑥𝑥)

Domain Transfer Networks
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• Learning
• Unified model to translate across domains 

• Consistency of feature and image space

• Adversarial loss

G∗ = arg min
G

max
D

ℒ𝑖𝑖𝑖𝑖𝑖𝑖 G + ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 G + ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D

ℒ𝑖𝑖𝑖𝑖𝑖𝑖 G = 𝔼𝔼 𝑔𝑔 𝑓𝑓 𝑦𝑦 − 𝑦𝑦 2

ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 G = 𝔼𝔼 𝑓𝑓(𝑔𝑔 𝑓𝑓 𝑥𝑥 ) − 𝑓𝑓(𝑥𝑥) 2

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D = 𝔼𝔼 log 1 − D(G(𝑥𝑥) + 𝔼𝔼 log 1 − D(G(𝑦𝑦) + 𝔼𝔼 log D 𝑦𝑦

𝑦𝑦

𝑥𝑥

G DG(𝑦𝑦)

G(𝑥𝑥)

Domain Transfer Networks



DTN
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• Example results

Taigman et al., "Unsupervised cross-domain image generation.“, ICLR 2016

SVHN 2 MNIST Photo 2 Emoji



Beyond Transfer Learning

• Cross-Domain Image Translation
• Pix2pix (CVPR’17): Pairwise cross-domain training data
• CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
• UNIT (NIPS’17): Learning cross-domain image representation (with unpaired training data)
• DTN (ICLR’17) : Learning cross-domain image representation (with unpaired training data)

• Representation Disentanglement
• InfoGAN & AC-GAN: Representation disentanglement in a single domain
• StarGAN (CVPR’18) : Image translation via representation disentanglement
• UFDN (NIPS’18): A Unified Feature Disentangler for Multi-Domain Image Translation and 

Maniuplation

126



Beyond Image Style Transfer:
Learning Interpretable Deep Representations
• Faceapp – Putting a smile on your face! 

• Deep learning for representation disentanglement 
• Interpretable deep feature representation

Input
Mr. Takeshi Kaneshiro

127



Recall: Generative Adversarial Networks (GAN)

• Architecture of GAN
• Loss

Goodfellow et al., Generative Adversarial Nets, NIPS, 2014

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 𝐺𝐺,𝐷𝐷 = 𝔼𝔼 log 1 − 𝐷𝐷 (𝐺𝐺(𝑥𝑥)) + 𝔼𝔼 log𝐷𝐷 𝑦𝑦

x

y

128



Representation Disentanglement

• Goal
• Interpretable deep feature representation
• Disentangle attribute of interest c from the derived latent representation z
• Possible solutions: VAE, GAN, or mix of them…

G
Latent feature z

(uninterpretable)

Interpretable
Factor c

(e.g., season)

129



Representation Disentanglement

• Goal
• Interpretable deep feature representation
• Disentangle attribute of interest c from the derived latent representation z

• Supervised setting: from VAE to conditional VAE

130



Representation Disentanglement

• Conditional VAE
• Given training data x and attribute of interest c,

we model the conditional distribution 𝑝𝑝𝜃𝜃 𝑥𝑥|𝑐𝑐 .

https://zhuanlan.zhihu.com/p/25518643 131



Representation Disentanglement

• Conditional VAE
• Example Results

132



Representation Disentanglement

• Conditional GAN
• Interpretable latent factor c
• Latent representation z

https://arxiv.org/abs/1411.1784 133



Representation Disentanglement

• Goal
• Interpretable deep feature representation
• Disentangle attribute of interest c from the derived latent representation z

• Unsupervised: InfoGAN
• Supervised: AC-GAN

InfoGAN
Chen et al.

NIPS ’16

ACGAN
Odena et al.

ICML ’17

Chen et al., InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets., NIPS 2016.
Odena et al., Conditional image synthesis with auxiliary classifier GANs. ICML’17 134



AC-GAN

Odena et al., Conditional image synthesis with auxiliary classifier GANs. ICML’17

Real data
w.r.t. its domain label

• Supervised Disentanglement 

G∗ = arg min
G

max
D

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D + ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D = 𝔼𝔼 log 1 − D(G(𝑧𝑧, 𝑐𝑐)) + 𝔼𝔼 log D 𝑦𝑦

ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D = 𝔼𝔼 − log Dcls(𝑐𝑐′|𝑦𝑦) + 𝔼𝔼 − log Dcls(𝑐𝑐|G(𝑥𝑥, 𝑐𝑐))

• Learning
• Overall objective function

• Adversarial Loss

• Disentanglement loss
G

D

𝑧𝑧𝑐𝑐

G(𝑧𝑧, 𝑐𝑐)𝑦𝑦 (real)

Supervised

Generated data
w.r.t. assigned label

135



AC-GAN

Odena et al., Conditional image synthesis with auxiliary classifier GANs. ICML’17

• Supervised Disentanglement 

G

D

𝑧𝑧𝑐𝑐

G(𝑧𝑧, 𝑐𝑐)𝑦𝑦 (real)

Supervised

Different 𝑐𝑐 values

136



InfoGAN

• Unsupervised Disentanglement 

Generated data
w.r.t. assigned label

G∗ = arg min
G

max
D

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D + ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D = 𝔼𝔼 log 1 − D(G(𝑧𝑧, 𝑐𝑐)) + 𝔼𝔼 log D 𝑦𝑦

ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D = 𝔼𝔼 − log Dcls(𝑐𝑐|G(𝑥𝑥, 𝑐𝑐))

• Learning
• Overall objective function

• Adversarial Loss

• Disentanglement loss

Chen et al., InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets., NIPS 2016.
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InfoGAN

• Unsupervised Disentanglement 

Chen et al., InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets., NIPS 2016.

• No guarantee in disentangling particular semantics 

Different 𝑐𝑐

Rotation Angle Width

Training process

Different 𝑐𝑐

Time

Loss
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Beyond Transfer Learning

• Cross-Domain Image Translation
• Pix2pix (CVPR’17): Pairwise cross-domain training data
• CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
• UNIT (NIPS’17): Learning cross-domain image representation (with unpaired training data)
• DTN (ICLR’17) : Learning cross-domain image representation (with unpaired training data)

• Representation Disentanglement
• InfoGAN & AC-GAN: Representation disentanglement in a single domain
• StarGAN (CVPR’18) : Joint image translation and representation disentanglement
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Beyond Transfer Learning

• Cross-Domain Image Translation
• Pix2pix (CVPR’17): Pairwise cross-domain training data
• CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
• UNIT (NIPS’17): Learning cross-domain image representation (with unpaired training data)
• DTN (ICLR’17) : Learning cross-domain image representation (with unpaired training data)

• Representation Disentanglement
• InfoGAN & AC-GAN: Representation disentanglement in a single domain
• StarGAN (CVPR’18) : Image translation via representation disentanglement
• UFDN (NIPS’18): A Unified Feature Disentangler for Multi-Domain Image Translation and 

Maniuplation
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StarGAN

• Goal
• Unified GAN for multi-domain image-to-image translation

Choi et al. "StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation." CVPR 2018

Traditional Cross-Domain Models Unified Multi-Domain Model
(StarGAN)
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StarGAN

• Goal
• Unified GAN for multi-domain image-to-image translation

Choi et al. "StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation." CVPR 2018

Traditional Cross-Domain Models
Unified Multi-Domain Model

(StarGAN)

Unified
G

𝐺𝐺𝐿2

𝐺𝐺𝐿3 𝐺𝐺24

𝐺𝐺34

𝐺𝐺𝐿4

𝐺𝐺23
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StarGAN

• Goal / Problem Setting
• Single image translation model across 

multiple domains 
• Unpaired training data
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StarGAN

• Goal / Problem Setting
• Single Image translation model across multiple

domains 
• Unpaired training data

• Idea
• Concatenate image and target domain label as input of generator
• Auxiliary domain classifier on Discriminator

Target domain Image
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StarGAN

• Goal / Problem Setting
• Single Image translation model across multiple

domains 
• Unpaired training data

• Idea
• Concatenate image and target domain label as input of 

Generator
• Auxiliary domain classifier as discriminator too
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StarGAN

• Goal / Problem Setting
• Single Image translation model across 

multiple domains 
• Unpaired training data

• Idea
• Concatenate image and target domain label as input of 

Generator
• Auxiliary domain classifier on Discriminator
• Cycle consistency across domains
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StarGAN
• Goal / Problem Setting

• Single Image translation model across 
multiple domains 

• Unpaired training data

• Idea
• Auxiliary domain classifier as discriminator
• Concatenate image and target domain label as input
• Cycle consistency across domains
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StarGAN

• Learning
Overall objective function

G∗ = arg min
G

max
D

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D + ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D + ℒ𝑐𝑐𝑦𝑦𝑐𝑐 G
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StarGAN

• Learning

• Adversarial Loss

Overall objective function
G∗ = arg min

G
max
D

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D + ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D + ℒ𝑐𝑐𝑦𝑦𝑐𝑐 G

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D = 𝔼𝔼 log 1 − D(G(𝑥𝑥, 𝑐𝑐)) + 𝔼𝔼 log D 𝑦𝑦

Adversarial Loss 𝑦𝑦G(𝑥𝑥, 𝑐𝑐)

𝑥𝑥𝑐𝑐

149



StarGAN

• Learning

• Adversarial Loss

• Domain Classification Loss (Disentanglement)

Overall objective function
G∗ = arg min

G
max
D

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D + ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D + ℒ𝑐𝑐𝑦𝑦𝑐𝑐 G

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D = 𝔼𝔼 log 1 − D(G(𝑥𝑥, 𝑐𝑐)) + 𝔼𝔼 log D 𝑦𝑦

Domain Classification Loss 𝑦𝑦G(𝑥𝑥, 𝑐𝑐)

𝑥𝑥𝑐𝑐

ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D = 𝔼𝔼 − log Dcls(𝑐𝑐′|𝑦𝑦) + 𝔼𝔼 − log Dcls(𝑐𝑐|G(𝑥𝑥, 𝑐𝑐))
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StarGAN

• Learning

• Adversarial Loss

• Domain Classification Loss (Disentanglement)

Overall objective function
G∗ = arg min

G
max
D

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D + ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D + ℒ𝑐𝑐𝑦𝑦𝑐𝑐 G

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D = 𝔼𝔼 log 1 − D(G(𝑥𝑥, 𝑐𝑐)) + 𝔼𝔼 log D 𝑦𝑦

Domain Classification Loss 𝑦𝑦G(𝑥𝑥, 𝑐𝑐)

ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D = 𝔼𝔼 − log Dcls(𝑐𝑐′|𝑦𝑦) + 𝔼𝔼 − log Dcls(𝑐𝑐|G(𝑥𝑥, 𝑐𝑐))

Real data
w.r.t. its domain label

𝑐𝑐

𝑥𝑥

Dcls(𝑐𝑐′|𝑦𝑦)
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StarGAN

• Learning

• Adversarial Loss

• Domain Classification Loss (Disentanglement)

Overall objective function
G∗ = arg min

G
max
D

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D + ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D + ℒ𝑐𝑐𝑦𝑦𝑐𝑐 G

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D = 𝔼𝔼 log 1 − D(G(𝑥𝑥, 𝑐𝑐)) + 𝔼𝔼 log D 𝑦𝑦

Domain Classification Loss 𝑦𝑦G(𝑥𝑥, 𝑐𝑐)

ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D = 𝔼𝔼 − log Dcls(𝑐𝑐′|𝑦𝑦) + 𝔼𝔼 − log Dcls(𝑐𝑐|G(𝑥𝑥, 𝑐𝑐))

Generated data
w.r.t. assigned label

𝑐𝑐 𝑥𝑥

Dcls(𝑐𝑐|G(𝑥𝑥, 𝑐𝑐))
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StarGAN

• Learning

• Adversarial Loss

• Domain Classification Loss (Disentanglement)

• Cycle Consistency Loss

Overall objective function
G∗ = arg min

G
max
D

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D + ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D + ℒ𝑐𝑐𝑦𝑦𝑐𝑐 G

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D = 𝔼𝔼 log 1 − D(G(𝑥𝑥, 𝑐𝑐)) + 𝔼𝔼 log D 𝑦𝑦

Consistency Loss

𝑐𝑐𝑥𝑥

G(𝑥𝑥, 𝑐𝑐)

𝑥𝑥𝑐𝑐ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D
= 𝔼𝔼 − log Dcls(𝑐𝑐′|𝑦𝑦) + 𝔼𝔼 − log Dcls(𝑐𝑐|G(𝑥𝑥, 𝑐𝑐))

ℒ𝑐𝑐𝑦𝑦𝑐𝑐 G = 𝔼𝔼 G G 𝑥𝑥, 𝑐𝑐 , 𝑐𝑐𝑥𝑥 − 𝑥𝑥 𝐿

G G 𝑥𝑥, 𝑐𝑐 , 𝑐𝑐𝑥𝑥
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StarGAN

• Learning

• Adversarial Loss

• Domain Classification Loss

• Cycle Consistency Loss

Overall objective function
G∗ = arg min

G
max
D

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D + ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D + ℒ𝑐𝑐𝑦𝑦𝑐𝑐 G

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D = 𝔼𝔼 log 1 − D(G(𝑥𝑥, 𝑐𝑐)) + 𝔼𝔼 log D 𝑦𝑦

ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D = 𝔼𝔼 − log Dcls(𝑐𝑐′|𝑦𝑦) + 𝔼𝔼 − log Dcls(𝑐𝑐|G(𝑥𝑥, 𝑐𝑐))

ℒ𝑐𝑐𝑦𝑦𝑐𝑐 G = 𝔼𝔼 G G 𝑥𝑥, 𝑐𝑐 , 𝑐𝑐𝑥𝑥 − 𝑥𝑥 𝐿
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StarGAN
• Example results 

• StarGAN can somehow be viewed as a representation disentanglement model, 
instead of an image translation one.

Choi et al. "StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation." CVPR 2018

Multiple Domains Multiple Domains

Github Page: https://github.com/yunjey/StarGAN
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Beyond Transfer Learning

• Cross-Domain Image Translation
• Pix2pix (CVPR’17): Pairwise cross-domain training data
• CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
• UNIT (NIPS’17): Learning cross-domain image representation (with unpaired training data)
• DTN (ICLR’17) : Learning cross-domain image representation (with unpaired training data)

• Representation Disentanglement
• InfoGAN & AC-GAN: Representation disentanglement in a single domain
• StarGAN (CVPR’18) : Image translation via representation disentanglement
• UFDN (NIPS’18): A Unified Feature Disentangler for Multi-Domain Image Translation and 

Maniuplation
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A Unified Feature Disentangler for 
Multi-Domain Image Translation and Manipulation
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• Learning interpretable representations



A Unified Feature Disentangler for 
Multi-Domain Image Translation and Manipulation
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• Learning interpretable representations



A Unified Feature Disentangler for 
Multi-Domain Image Translation and Manipulation
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• Learning interpretable representations



Example Results

• Face image translation
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Example Results

• Multi-attribute image translation
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What Have We Covered in Today’s Lecture?

• Brief Review to CV/ML Backgrounds
• Recent Advances in Deep Learning for Computer Vision

• Transfer Learning and Representation Disentanglement
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Resources

• http://deeplearning.net/
• Hub to many other deep learning resources

• https://github.com/ChristosChristofidis/awesome-deep-learning
• A resource collection deep learning

• https://github.com/kjw0612/awesome-deep-vision
• A resource collection deep learning for computer vision

• http://cs231n.stanford.edu/syllabus.html
• Nice course on CNN for visual recognition

• http://deeplearning.ai
• Lots of online course videos by Andrew Ng

• http://vllab.ee.ntu.edu.tw/dlcv.html
• DLCV course at NTU
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https://github.com/ChristosChristofidis/awesome-deep-learning
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Vision & Learning Lab at NTU
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http://vllab.ee.ntu.edu.tw/

http://vllab.ee.ntu.edu.tw/


Thank You!
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