Slides available at: https://ppt.cc/ficc8x

Al Summer School 2019

Deep Transfer Learning and Representation Disentanglement for Visual Analysis

Yu-Chiang Frank Wang 王鈺強, Associate Professor

Dept. Electrical Engineering, National Taiwan University Taipei, Taiwan

2019/08/14

About Myself

Research Interests

Computer Vision, Machine Learning, Deep Learning, Artificial Intelligence

• Education

- PhD in ECE, Carnegie Mellon University, 2004 2009
- MS in ECE, Carnegie Mellon University, 2002 2004
- BS in EE, National Taiwan University, 1997 2001

Work Experience

Associate Professor
 GICE/EE, National Taiwan University
 Deputy Director
 Research Center for IT Innovation (CITI), Academia Sinica
 Associate Research Fellow
 CITI, Academia Sinica
 Assistant Research Fellow
 CITI, Academia Sinica

About Myself (cont'd)

- Selected Honors & Awards
 - Outstanding Young Researcher Ministry of Science & Technology 2017-2019, 2013-2015
 - Nominated for **Best Paper Awards** IEEE AVSS 2015, IEEE ICME 2013
 - [2017/12] **1**st **Place Award** MOST Workshop on Generative Adversarial Networks & Project Competition
 - [2018/05] 2nd Place Award NVIDIA GTC Taiwan 2018, Research Presentation
 - [2018/06] 2nd Place Award CVPR 2018 Challenge on DeepGlobe (by Facebook & DigitalGlobe)
 - 1st Place Award by Sensetime sensetime
 - Other teams are from MIT, Univ. Maryland, etc.

About Myself (cont'd)

- Industrial Collaboration
 - Collaborators:

- Remarks/Recognition
 - "9 startups to watch", Alibaba Entrepreneurs Fund, 2017
 - "10 coolest tech startups in Taiwan", MOST, 2018
 - "Top 9 AI startups in Taiwan", Crunchbase, 2019

深度學習及電腦視覺為基礎,透過影音辨識及

公而減少家庭及社會的醫療負擔,提升癌症治療品質,創造最大的

注區塊鏈技術的電子資產註冊系統,使用者能將

♀ Appier 海星互動科技,以人工智慧技術為基礎,幫助企業洞察消費

Ŷ Codementor 皮爾登迪亞, 全球最大的線上一對一程式语言教育吗

服務,幫助企業找尋短期或接案性質的優質工程師,滿足企業在尋求外部;

Y Health2Sync 基本生活科技,提供糖尿病患 O2O 線上數據結合線下的

協助糖尿病患更有效管结糖尿病计發症、以及協助醫療人員提升管理效率。 Ŷ iStaging 數位宅数, 强用 AR 及 VR 技術穿出實現、雲满料技、空間設 售屋應用服務,利用創新技術解決過去講屋、着屋與執責設計購到的不僅。 Ŷ Jeltywiz 藥利數位, 经電商平台起來, 為兩岸同步電子面務及品房營備 阿里巴巴旗下 B2C 跨境電商平台无端金牌運營商的台資企業。 Ŷ NextDrive 聯查科技, 以物聯鎖技術實現智慧家並及智慧節能的目標。

提升投管公禁。

行為,幫助企業提升網路廣告投放轉換率。

利用智能分析技術達到真正智慧家庭的目標。

Viscovery 創意引睹

受他人侵犯

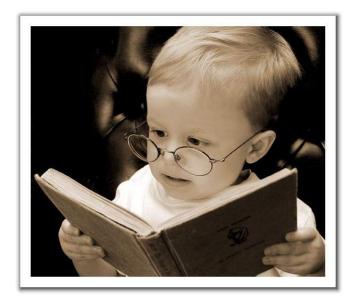
Bitmark · 是

需求並協助專案管理。

權,保護數位資

What Will Be Covered in Today's Lecture?

- Brief Review to CV/ML Backgrounds
- Recent Advances in Deep Learning for Computer Vision
- Transfer Learning and Its Applications to Image Analysis and Synthesis



Computer Vision: What, When, and Why

• Remarks

- Give machines visual perception
- Learning for visual data
- In addition to Machine Learning, computer vision is closely related to Image Processing, Computer Graphics, Computational Photography, etc.

How many people are there?

What are people doing?

What object is the guy standing on?

Where is this picture taken?

Why is this picture **funny**?

Learning from Visual Data

Computer Vision

- Learning from visual data; give machines visual perception
- In addition to Machine Learning, computer vision is closely related to Image Processing, Computer Graphics, Computational Photography, etc.

How many people are there?

What are people doing?

What object is the guy standing on?

Where is this picture taken?

Why is this picture **funny**?

Learning from Visual Data (cont'd)

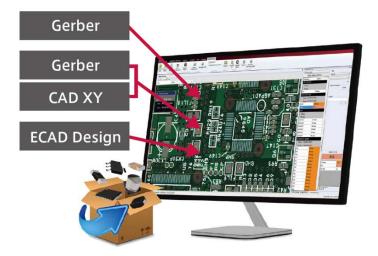
- Existing CV Applications
 - Biometrics (e.g., face, iris, gait recognition)
 - Optical character recognition (OCR)
 - Sports (tennis, football, basketball, etc.)

And many more...

From Computer Vision to Artificial Intelligence

- Coming AI+CV Applications
 - Virtual/augmented reality (VR/AR)
 - Automated optical inspection (AOI)
 - Self-driving car
 - Industrial robots
 - Medical imaging

And increasingly more than we can imagine!



Style Transfer

EverFilter

Style Transfer

Snapchat

Snap Inc 社交

Ⅰ 輔導級

含廣告內容 ▲ 你沒有任何裝置。

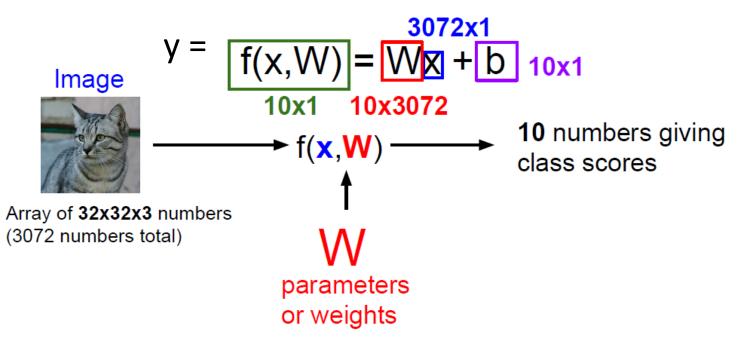
More Examples for Style Transfer

Take Visual Classification for Example

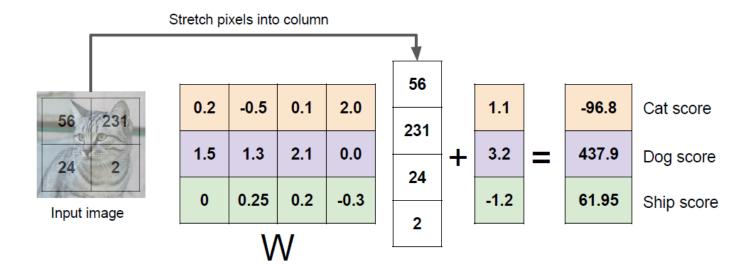
- Linear Classifier as the Learning Model
 - Can be viewed as a parametric approach. Why?
 - Assuming that we need to recognize 10 object categories of interest
 - E.g., CIFAR10 with 50K training & 10K test images of 10 categories. And, each image is of size 32 x 32 x 3 pixels.

airplane	2	100	-	R.	No.
automobile					
bird	-	1	**	1 2	1.2
cat	in 🔊	AT	1		
deer	1		m	*	
dog	77 X	F 3		1. 7	A St
frog	1	30	6 7	3, 🐬	So an
horse	-	WA P	A A	1.	
ship	- 2	11 2	-		
truck	1		and the	-	

- Linear Classifier as the Learning Model (cont'd)
 - Can be viewed as a parametric approach. Why?
 - Assuming that we need to recognize 10 object categories of interest (e.g., CIFAR10).
 - Let's take the input image as **x**, and the linear classifier as **W**.
 - We hope to see that y = Wx + b as a 10-dimensional output, in which each entry indicates the score of the associated class.



- Linear Classifier as the Learning Model (cont'd)
 - Take an image with 2 x 2 pixels & 3 classes of interest as example.
 - We need to learn a linear classifier W (with a bias b), so that a set of desirable outputs y = Wx + b can be expected.



Some Remarks

- Interpreting the classifier W
 - The weights in W are trained by observing training data X and their ground truth Y.
 - Each column in **W** can be viewed as an "exemplar" of the corresponding class.
 - Thus, **Wx** basically performs inner product (or correlation) between the "input **x**" and the "exemplar of each class".

3072x1

b

10x1

10 numbers giving

class scores

= Wx +

10x1 10x3072

► f(x,W)

parameters

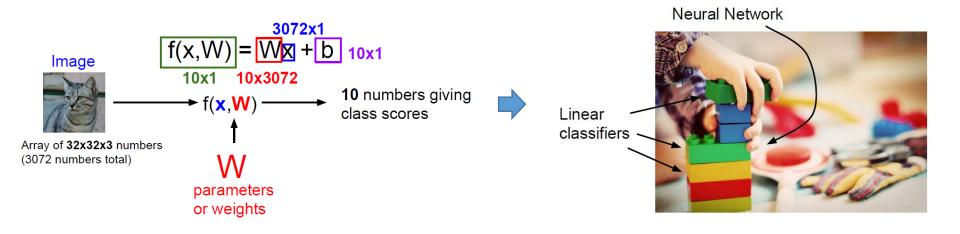
f(x.W

Image

Array of **32x32x3** numbers (3072 numbers total)

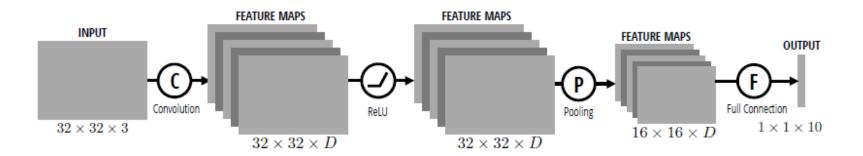
Some Remarks (cont'd)

- From Linear to Non-Linear Classifiers
 - Starting points for complex/nonlinear classifiers
 - How to determine a proper loss function for matching y and Wx+b, followed by the learning of W (including b), are the keys to the success of ML models.

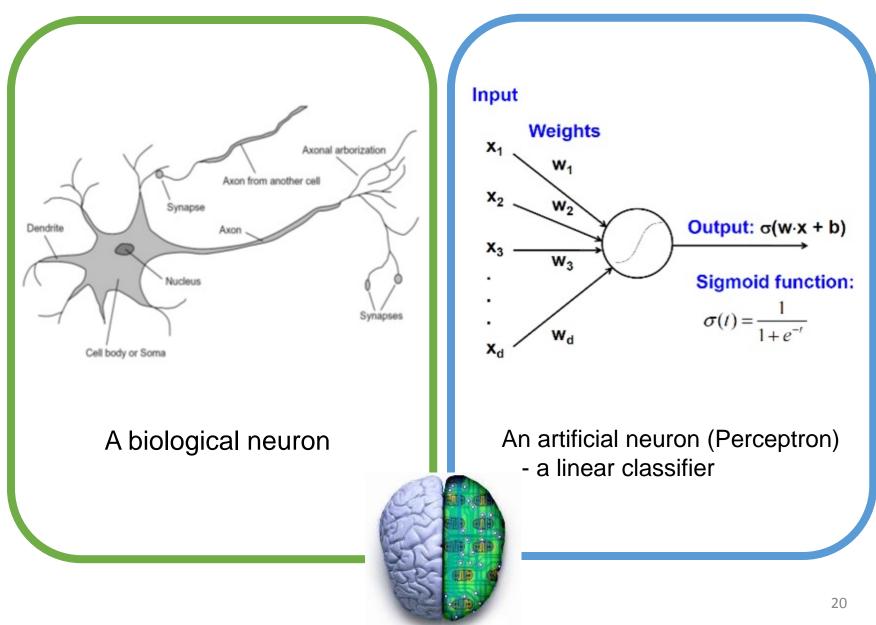


(A Very Quick) Intro to Neural Networks & CNN

- Neural Network & Multilayer Perceptron
- Convolutional Neural Networks

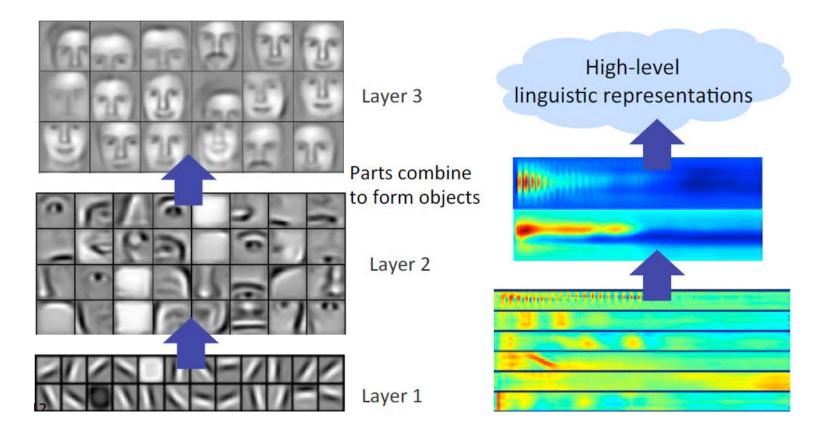


Biological neuron and Perceptrons

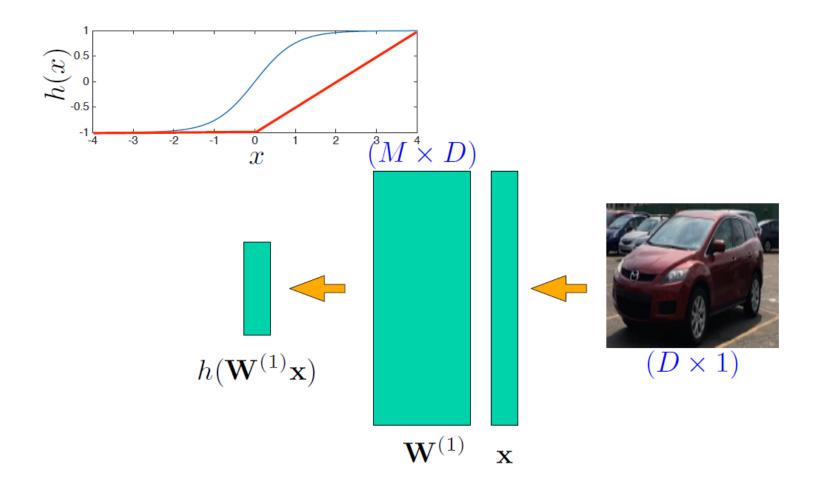


Hierarchical Learning

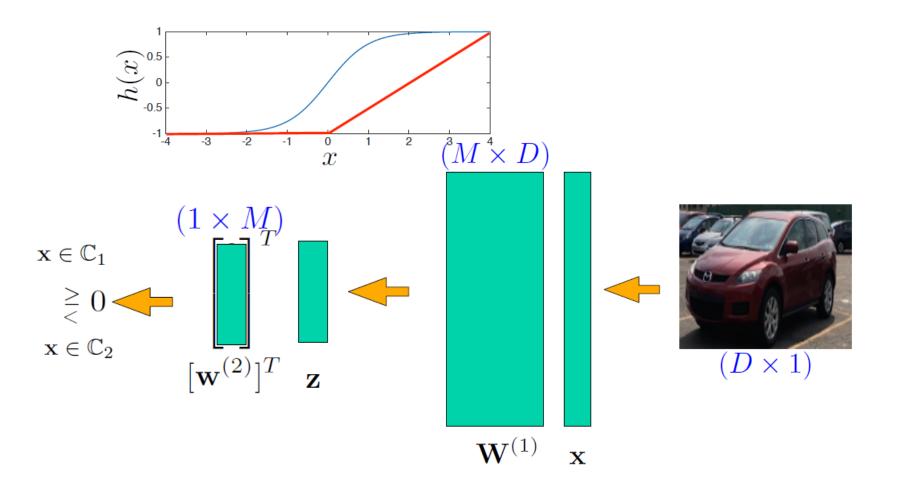
• Successive model layers learn deeper intermediate representations.



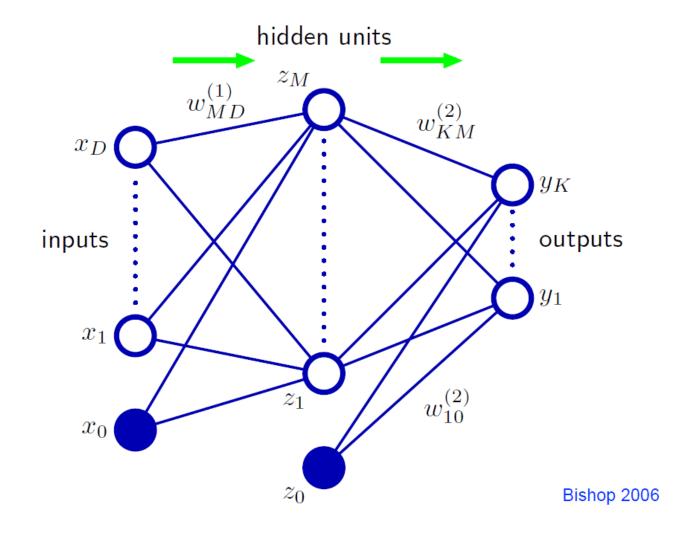
Multi-Layer Perceptron: A Nonlinear Classifier



Multi-Layer Perceptron: A Nonlinear Classifier (cont'd)

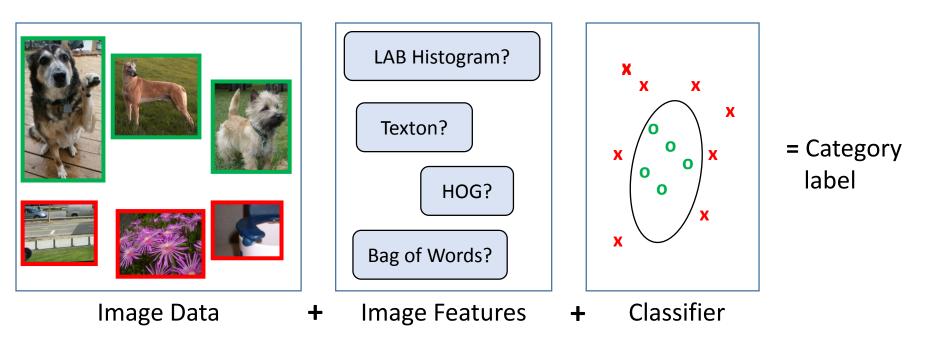


Multi-Layer Perceptron: A Nonlinear Classifier (cont'd)



Supervised Learning for Visual Classification

• General framework



Supervised Learning for Visual Classification

• Training vs. Testing Phases

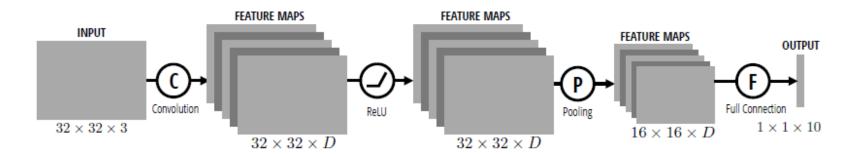
Training Images Training **Image Features** Classifier Trained Classifier Training Image Labels Testing Prediction Trained **Image Features** Classifier "Outdoor" Test Image

What Are the Right Features?

- Depending on the task of interest!
- Possible choices
 - Object: shape
 - Local shape info, shading, shadows, texture
 - Scene : geometric layout
 - linear perspective, gradients, line segments
 - Material properties: albedo, feel, hardness
 - Color, texture
 - Action: motion
 - Optical flow, tracked points

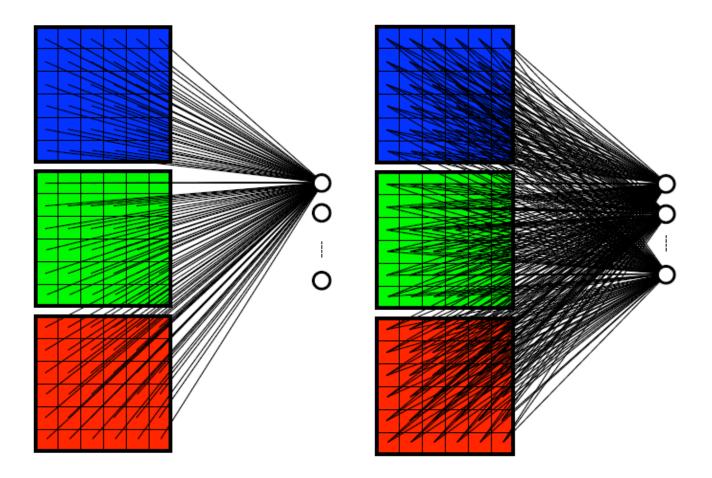
(A Very Quick) Intro to Neural Networks & CNN

- Neural Network & Multilayer Perceptron
- Convolutional Neural Networks



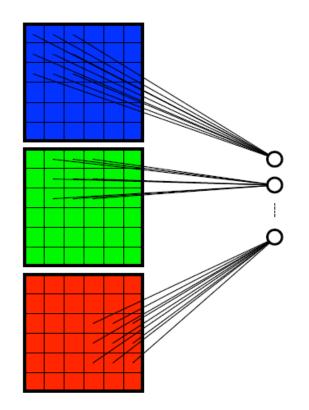
Convolutional Neural Networks

• How many weights for MLPs for images?



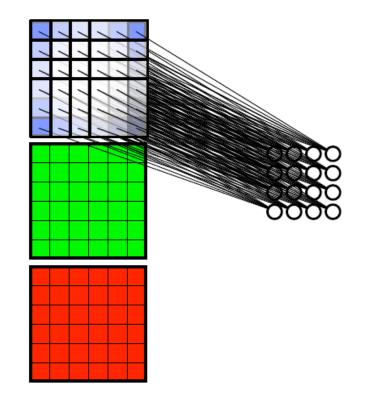
Convolutional Neural Networks

- Property I of CNN: Local Connectivity
 - Each neuron takes info only from a neighborhood of pixels.

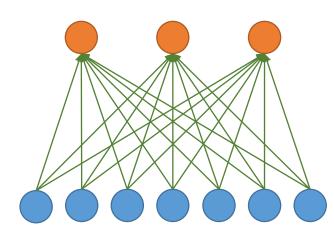


Convolutional Neural Networks

- Property II of CNN: Weight Sharing
 - Neurons connecting all neighborhoods have identical weights.

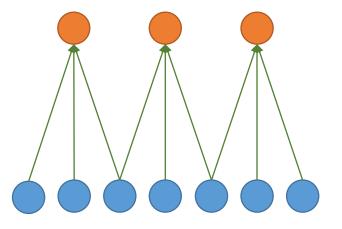


CNN: Local Connectivity



Hidden layer

Input layer

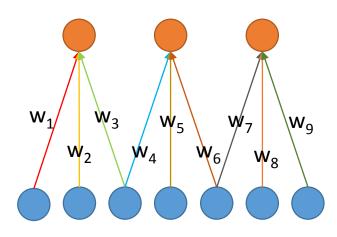


Global connectivity

Local connectivity

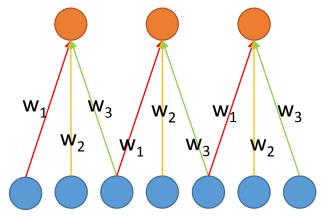
- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Global connectivity:
 - Local connectivity:

CNN: Weight Sharing



Hidden layer

Input layer

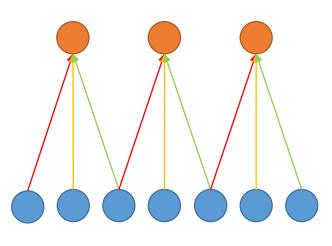


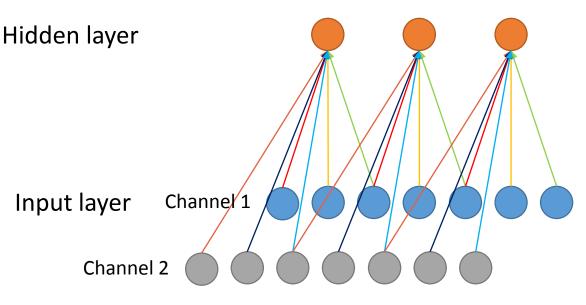
Without weight sharing

With weight sharing

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Without weight sharing:
 - With weight sharing :

CNN with Multiple Input Channels





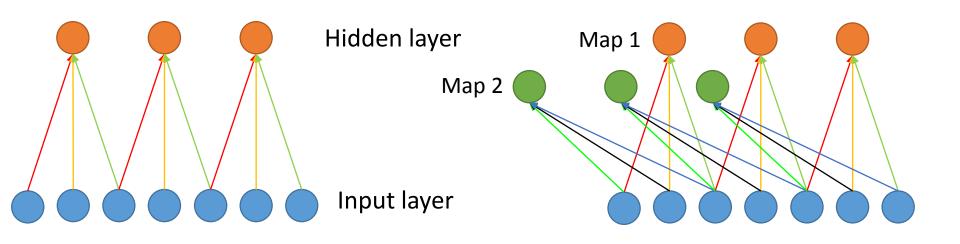
Single input channel

Multiple input channels



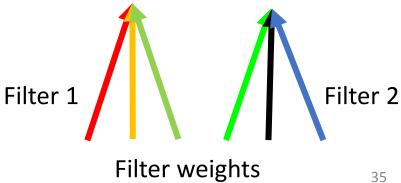
Filter weights

CNN with Multiple Output Maps



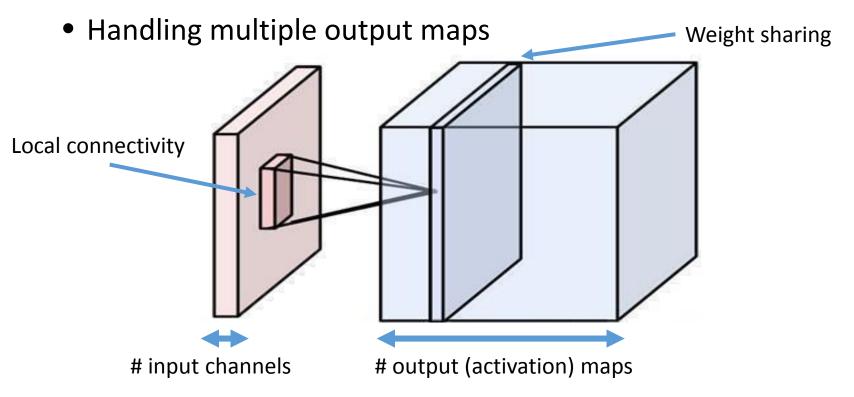
Single output map

Multiple output maps



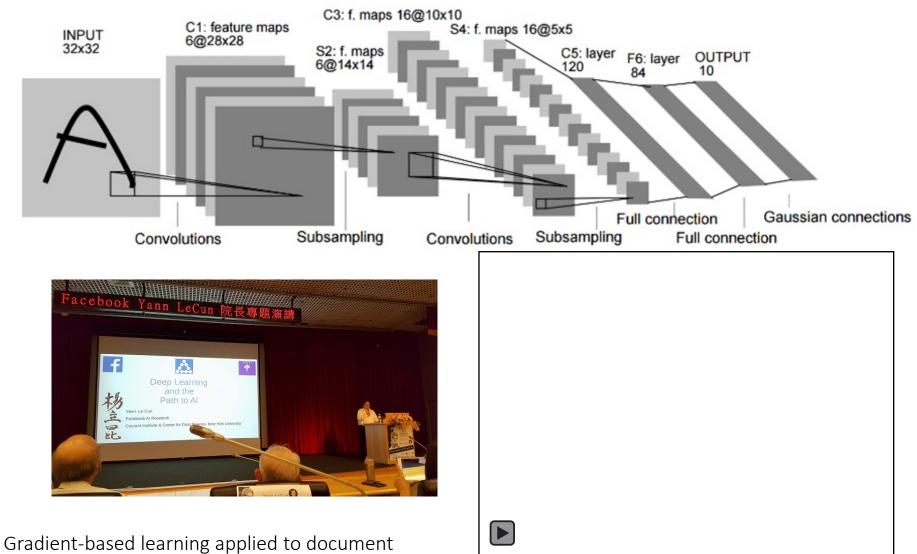
Putting them together

- Local connectivity
- Weight sharing
- Handling multiple input channels



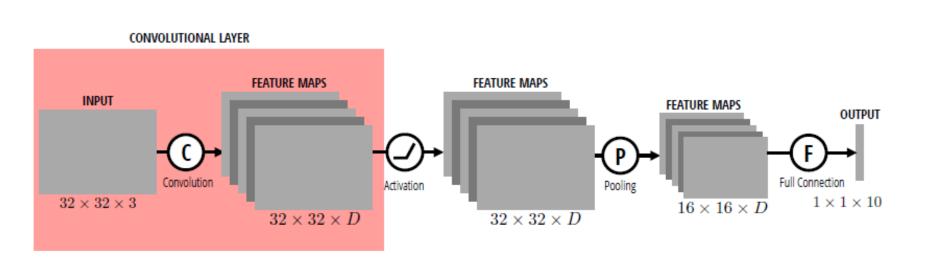
LeNet [LeCun et al. 1998]

recognition [LeCun, Bottou, Bengio, Haffner 1998]

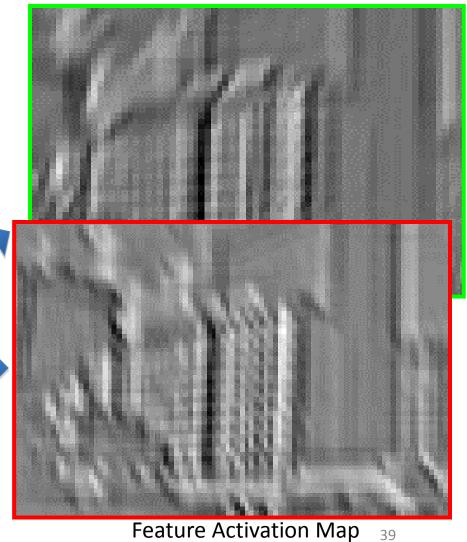


LeNet-1 from 1993

Convolution Layer in CNN

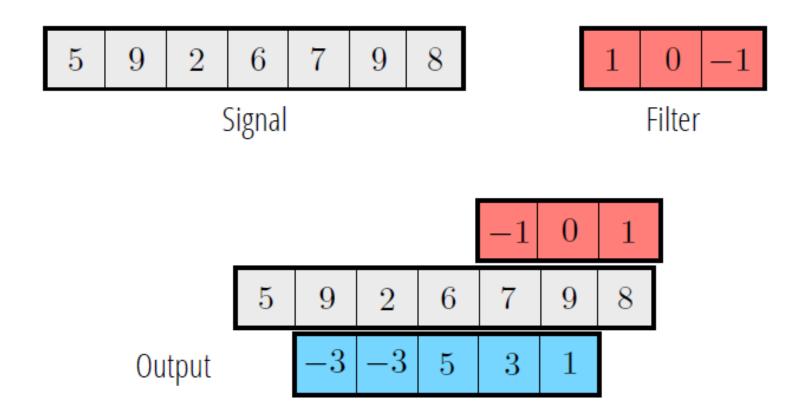


Weighted moving sum



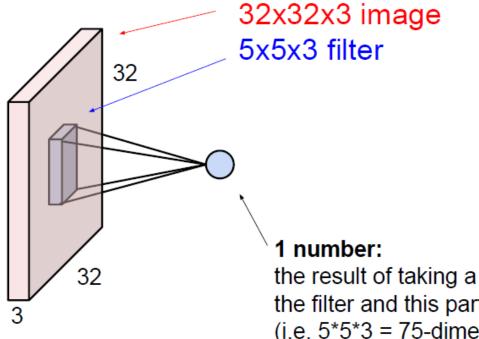
Input

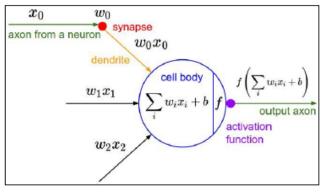
slide credit: S. Lazebnik



Convolution is a local linear operator

• The brain/neuron view of CONV layer

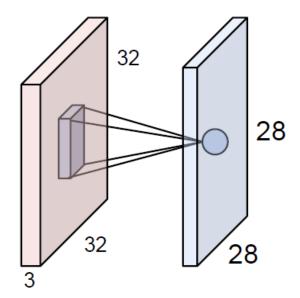




It's just a neuron with local connectivity...

the result of taking a dot product between the filter and this part of the image (i.e. 5*5*3 = 75-dimensional dot product)

• The brain/neuron view of CONV layer

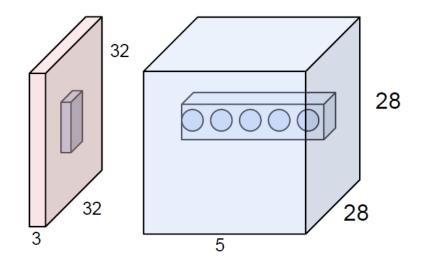


An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the input
- 2. All of them share parameters

"5x5 filter" -> "5x5 receptive field for each neuron"

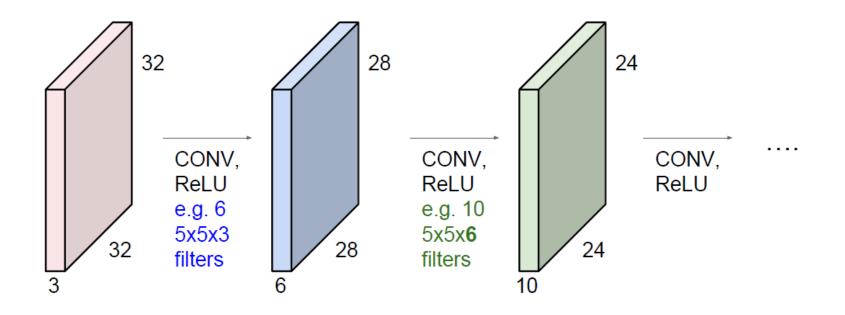
• The brain/neuron view of CONV layer



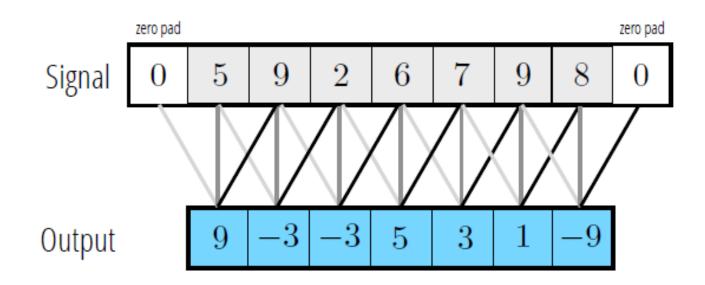
E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

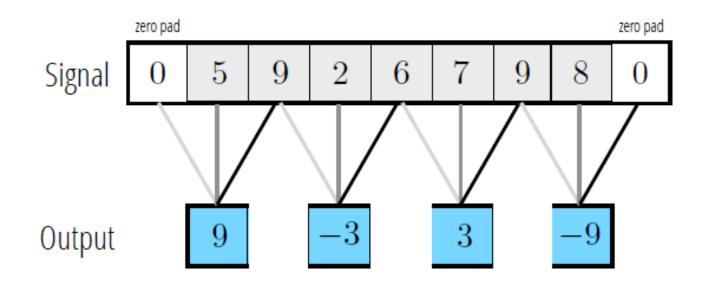
Image input with 32 x 32 pixels convolved repeatedly with 5 x 5 x 3 filters shrinks volumes spatially (32 -> 28 -> 24 -> ...).



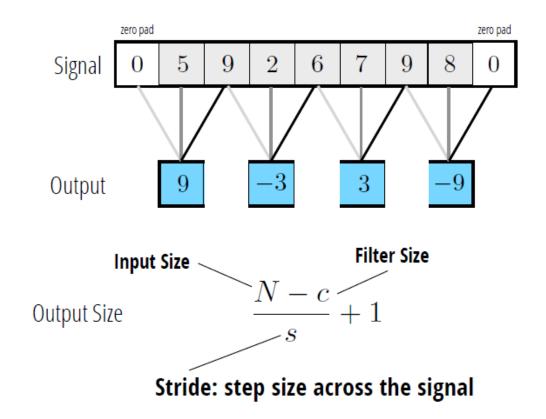
- Zero Padding
 - Output is the same size as input (doesn't shrink as the network gets deeper).



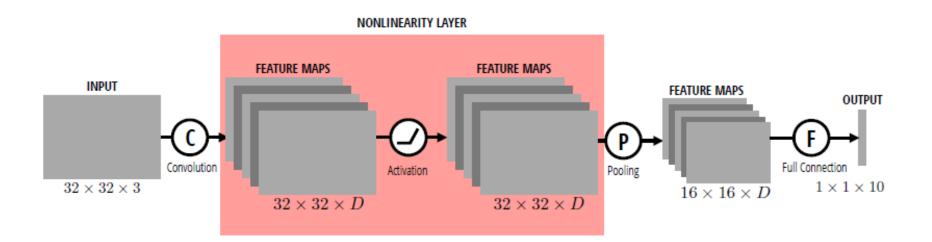
- Stride
 - Step size across signals



- Stride
 - Step size across signals

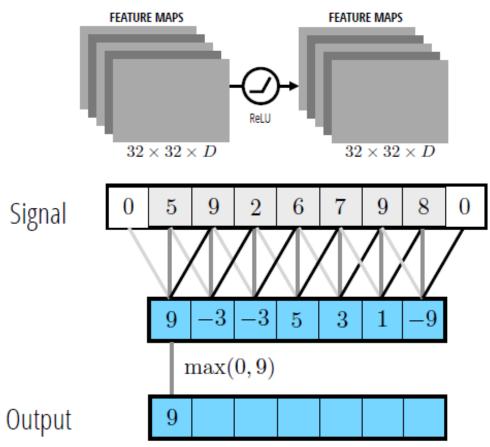


Nonlinearity Layer in CNN



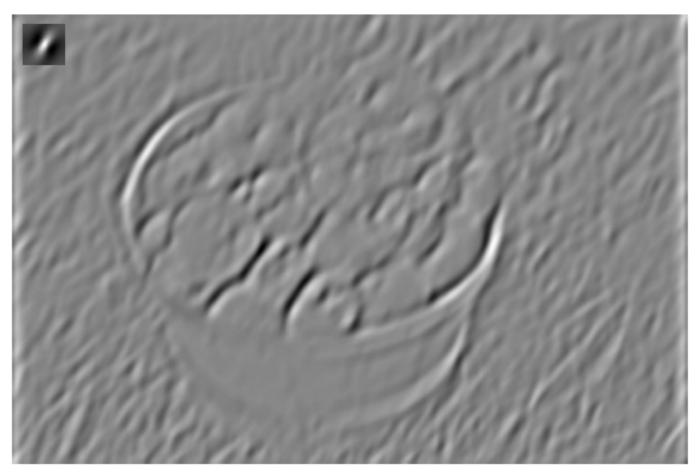
Nonlinearity Layer

- E.g., ReLU (Rectified Linear Unit)
 - Pixel by pixel computation of max(0, x)



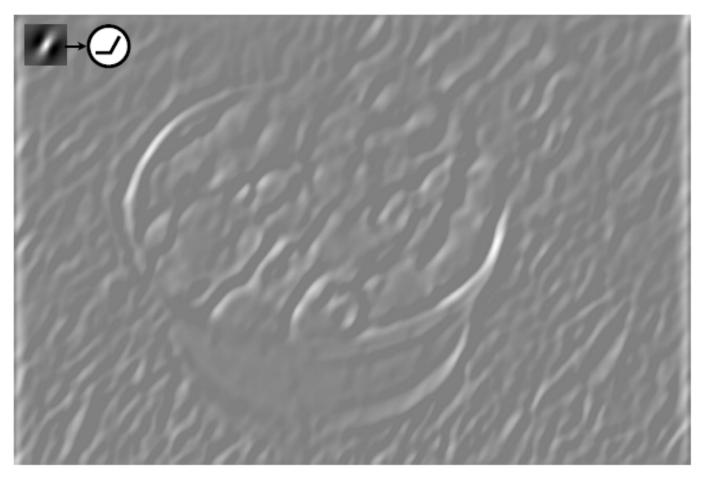
Nonlinearity Layer

- E.g., ReLU (Rectified Linear Unit)
 - Pixel by pixel computation of max(0, x)

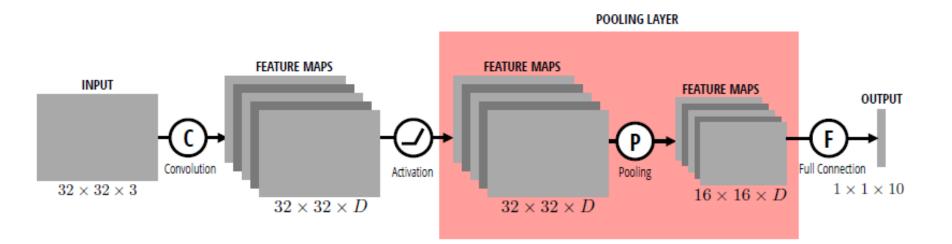


Nonlinearity Layer

- E.g., ReLU (Rectified Linear Unit)
 - Pixel by pixel computation of max(0, x)

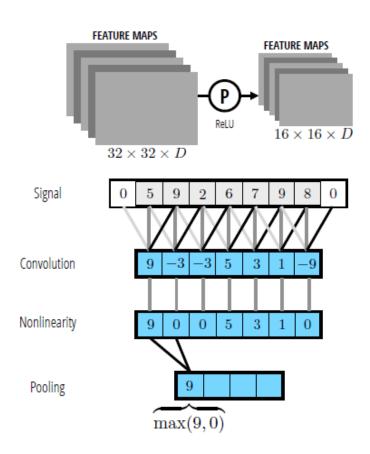


Pooling Layer in CNN



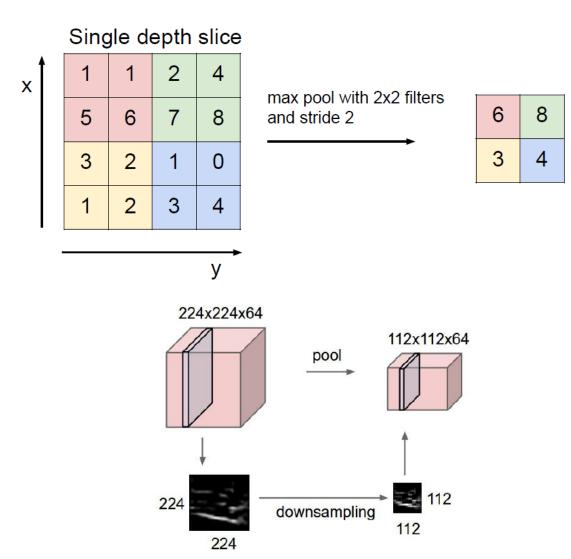
Pooling Layer

- Makes the representations smaller and more manageable
- Operates over each activation map independently
- E.g., Max Pooling

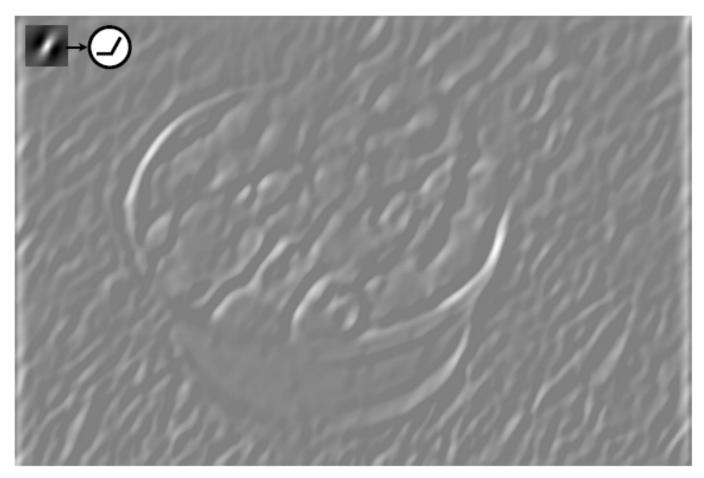


Pooling Layer

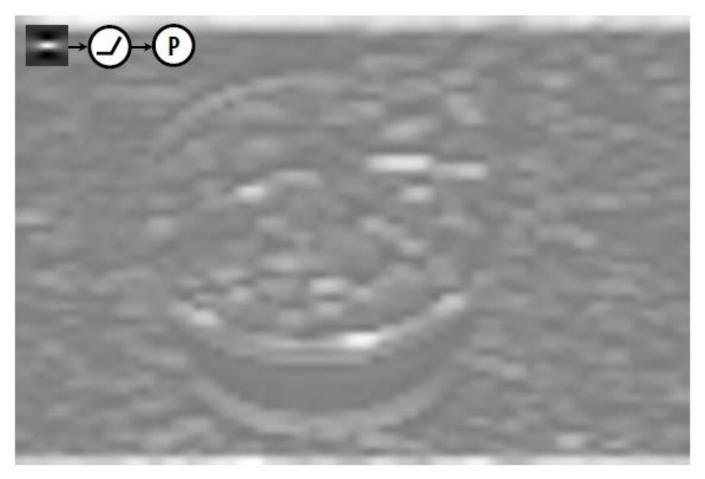
• Reduces the spatial size and provides spatial invariance



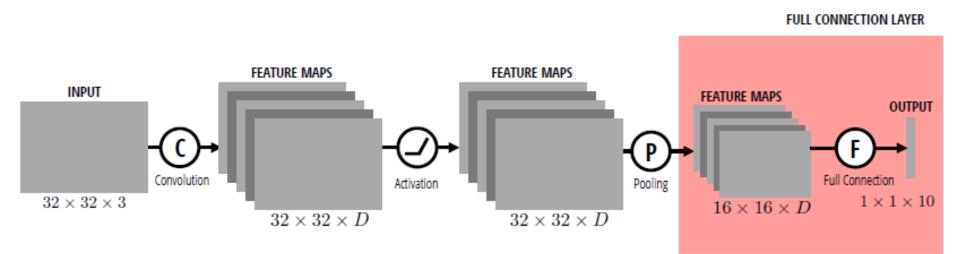
- Example
 - Nonlinearity by ReLU



- Example
 - Max pooling

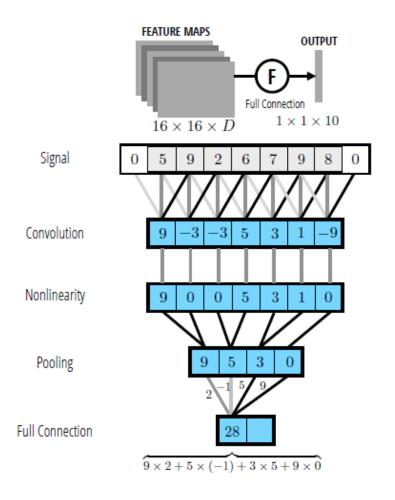


Fully Connected (FC) Layer in CNN



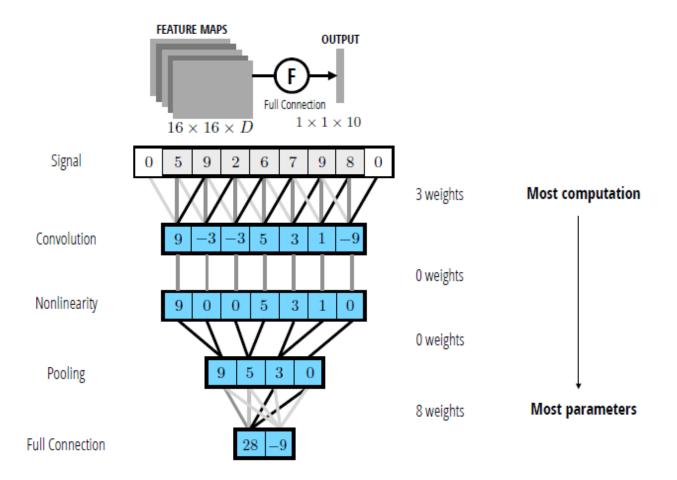
FC Layer

• Contains neurons that connect to the entire input volume, as in ordinary neural networks

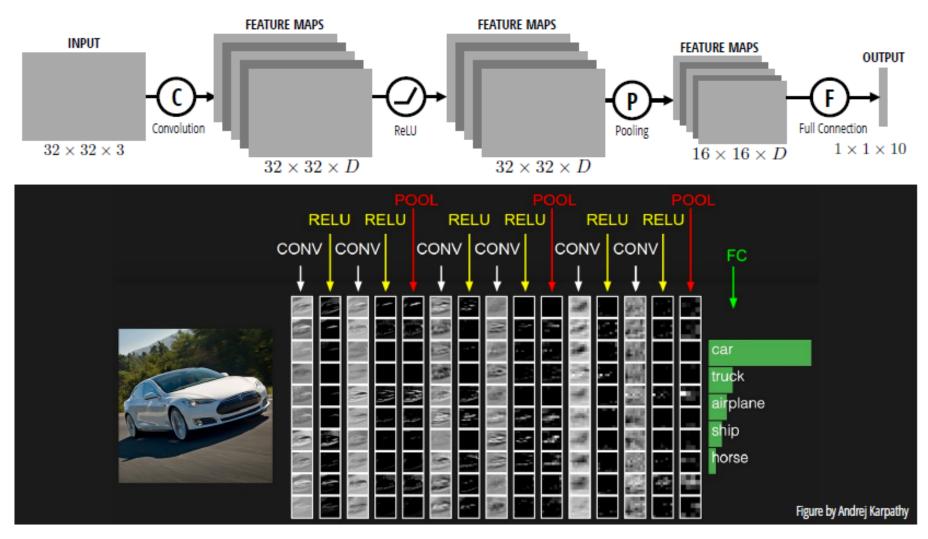


FC Layer

• Contains neurons that connect to the entire input volume, as in ordinary neural networks



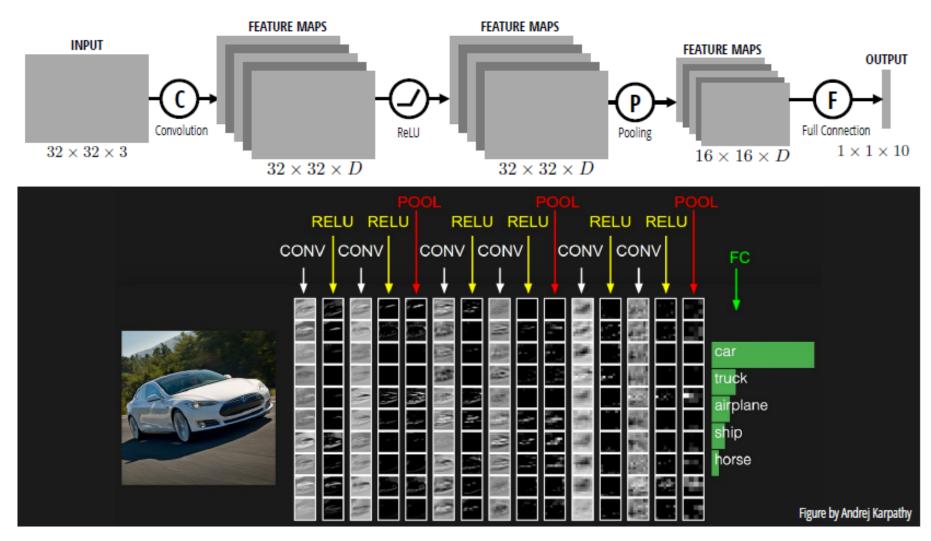
CNN



What Will Be Covered in Today's Lecture?

- Brief Review to CV/ML Backgrounds
- Recent Advances in Deep Learning for Computer Vision
- Transfer Learning and Its Applications to Image Analysis and Synthesis
- Beyond Transfer Learning: Representation Disentanglement*

Revisit of CNN

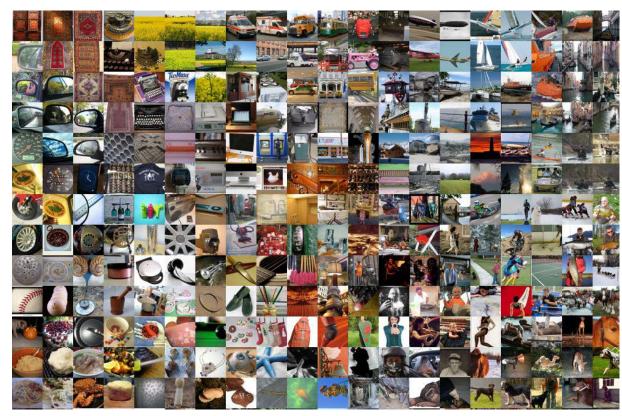


Transfer Learning: What, When, and Why?

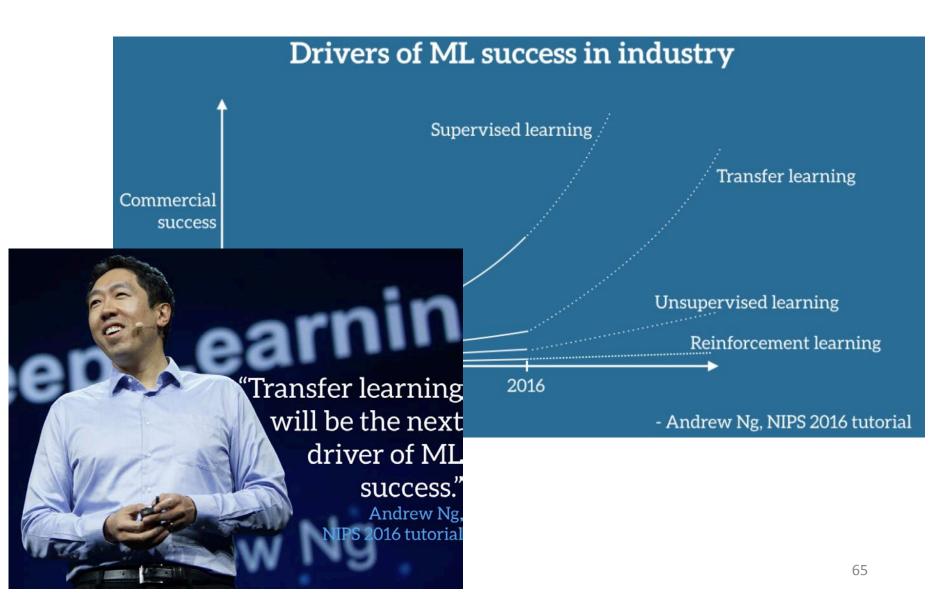
- What is Transfer Learning?
 - "Transfer learning is a research problem in machine learning that focuses on storing knowledge gained while solving one problem and applying it to a different but related problem." – Wikipedia
- What is the common assumption in Machine Learning?
 - Training data (typically annotated) would be available.
 - Training and test data are drawn from the same feature space and with the same distribution.

(Traditional) Machine Learning vs. Transfer Learning

- Machine Learning
 - Collecting/annotating data is typically expensive.



Why You Should Know Transfer Learning?

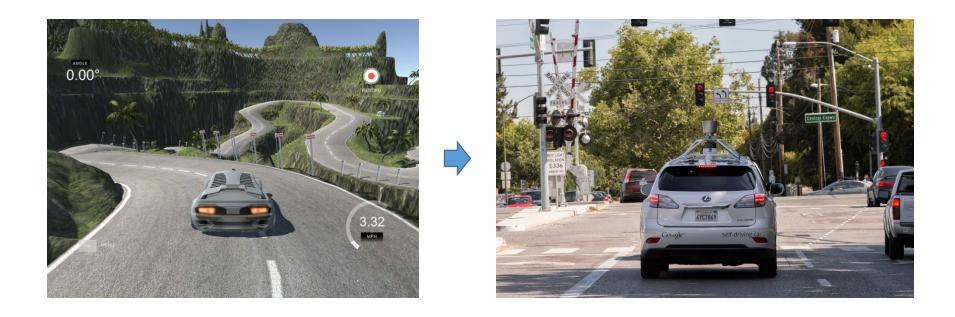


Transfer Learning: What, When, and Why? (cont'd)

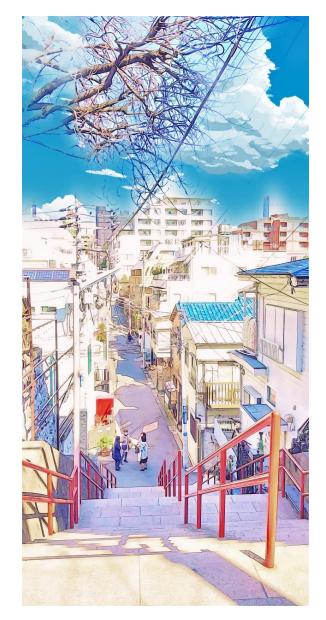
• Examples #2

vs.

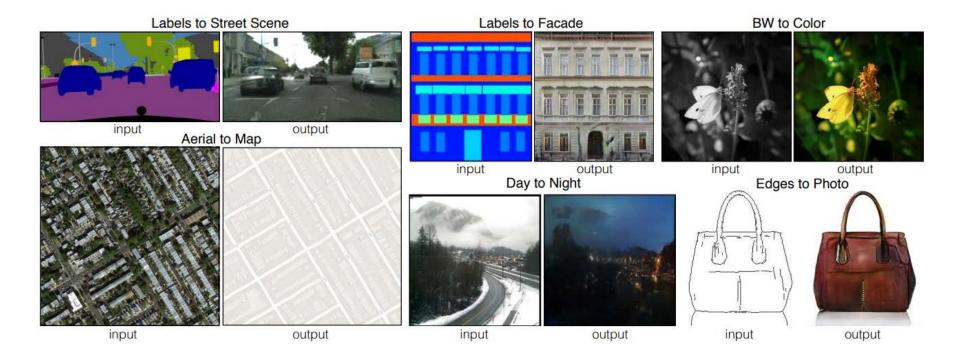
Why You Should Know Transfer Learning?

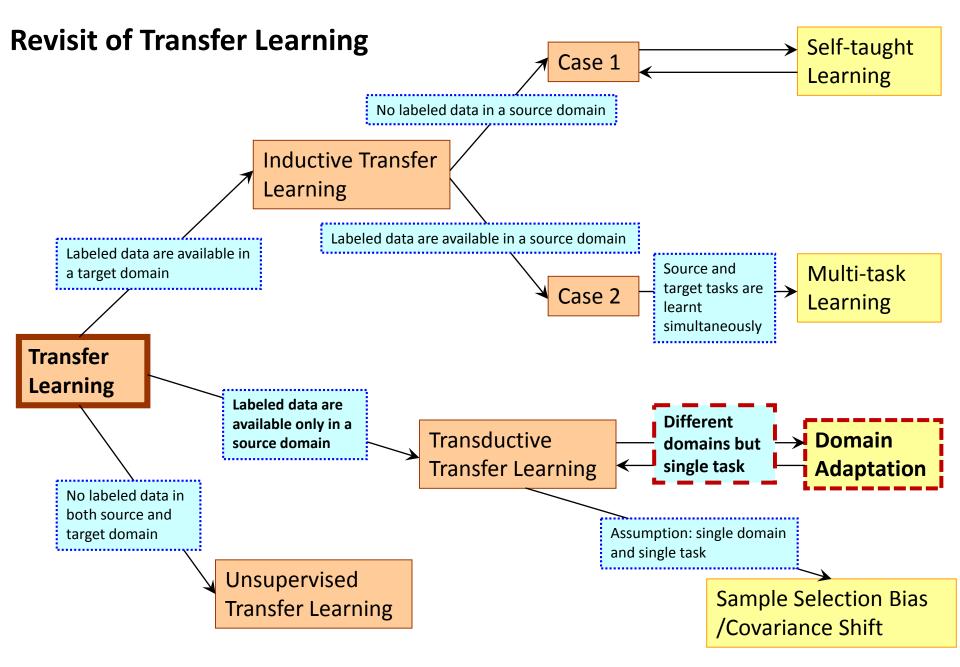


https://techcrunch.com/2017/02/08/udacity-open-sources-its-self-driving-car-simulator-for-anyone-to-use/ https://googleblog.blogspot.tw/2014/04/the-latest-chapter-for-self-driving-car.html • Beyond standard classification, we might need to address image translation/manipulation/style transfer tasks.



• More image translation/manipulation/style transfer tasks





S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE TKDE, 2010.

Domain Adaptation

Target

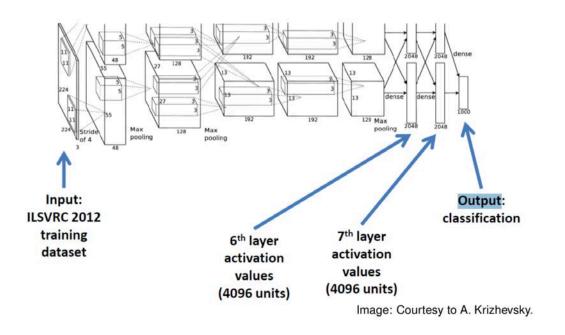
Sources

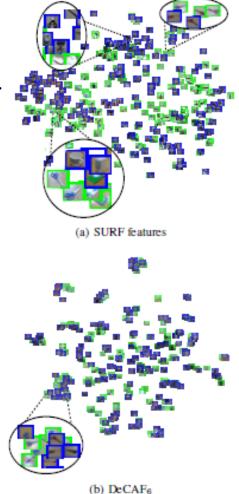
• What's DA?

- Image: Courtesy to S.J. Pan
- Leveraging info from one or more source domains, so that the same learning task in the target domain can be addressed.
- Typically all the source-domain data are labeled.
- Settings
 - Semi-supervised DA: few target-domain data are with labels.
 - Unsupervised DA: no label info available in the target-domain. (shall we address supervised DA?)
 - Imbalanced DA: fewer classes of interest in the target domain
 - Homogeneous vs. heterogeneous DA

Deep Feature is Sufficiently Promising.

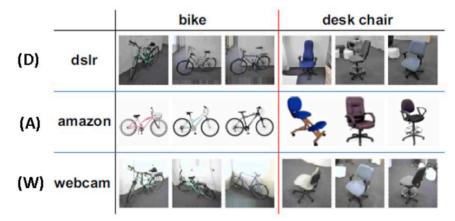
- DeCAF
 - Leveraging an auxiliary large dataset to train CNN.
 - The resulting features exhibit sufficient representation ability.
 - Supporting results on Office+Caltech datasets, etc.





Deep Feature is Sufficiently Promising.

- DeCAF
 - Leveraging an auxiliary large dataset to train CNN.
 - The resulting features exhibit sufficient representation ability.
 - Supporting results on Office+Caltech, etc. object image datasets



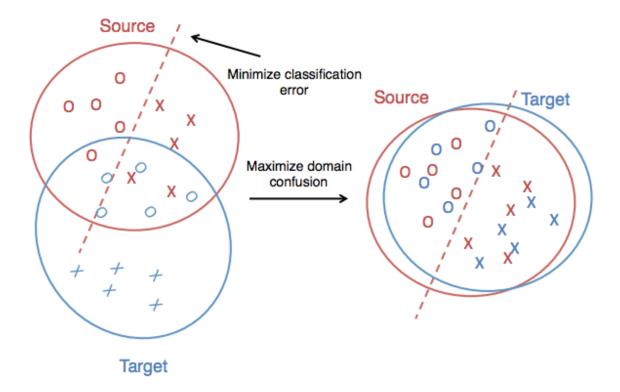
Feature						SUR	F							$Decaf_6$		
Teature							1									
data	Raw	SA	SDA	GFK	TCA	JDA	TJM	SCA	JGSA	JGSA	JGSA	JDA	OTGL	JGSA	JGSA	JGSA
									primal	linear	RBF			primal	linear	RBF
														-		
A→D	35.67	33.76	33.76	40.13	33.76	39.49	45.22	39.49	47.13	45.86	45.22	81.53	85.00	88.54	85.35	84.71
A→W	31.19	33.22	30.85	36.95	36.27	37.97	42.03	34.92	45.76	49.49	45.08	80.68	83.05	81.02	84.75	80.00
D→A	28.29	39.8 7	38.73	28.71	31.00	33.09	32.78	31.63	38.00	36.01	38.73	91.96	92.31	91.96	92.28	91.96
$D \rightarrow W$	83.73	76.95	76.95	80.34	86.10	89.49	85.42	84.41	91.86	91.86	93.22	99.32	96.29	99.66	98.64	98.64
W→A	31.63	39.25	39.25	27.56	28.91	32.78	29.96	29.96	39.87	41.02	40.81	90.71	90.62	90.71	91.44	91.34
W→D	84.71	75.16	75.80	85.35	89.17	89.17	89.17	87.26	90.45	90.45	88.54	100	96.25	100	100	100

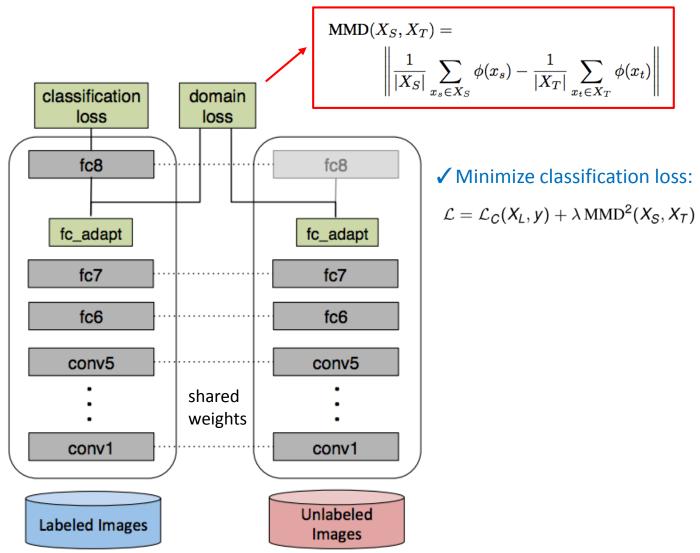
Recent Deep Learning Methods for TL

- Deep Domain Confusion (DDC)
- Domain-Adversarial Training of Neural Networks (DANN)
- Adversarial Discriminative Domain Adaptation (ADDA)
- Domain Separation Network (DSN)
- Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks (PixelDA)
- No More Discrimination: Cross City Adaptation of Road Scene Segmenters

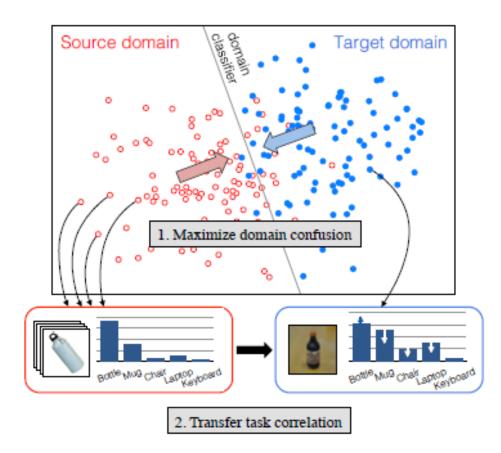
	Shared weights	Adaptation loss	Generative model
DDC	1	MMD	×
DANN	1	Adversarial	×
ADDA	×	Adversarial	×
DSN	Partially shared	MMD/Adversarial	×
PixelDA	×	Adversarial	\checkmark

- Deep Domain Confusion: Maximizing for Domain Invariance
 - Tzeng et al., arXiv: 1412.3474, 2014

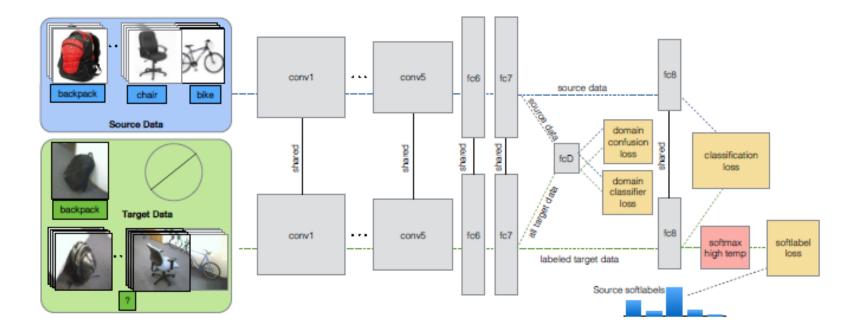




- Simultaneous Deep Transfer Across Domains and Tasks
 - Tzeng et al., ICCV, 2015

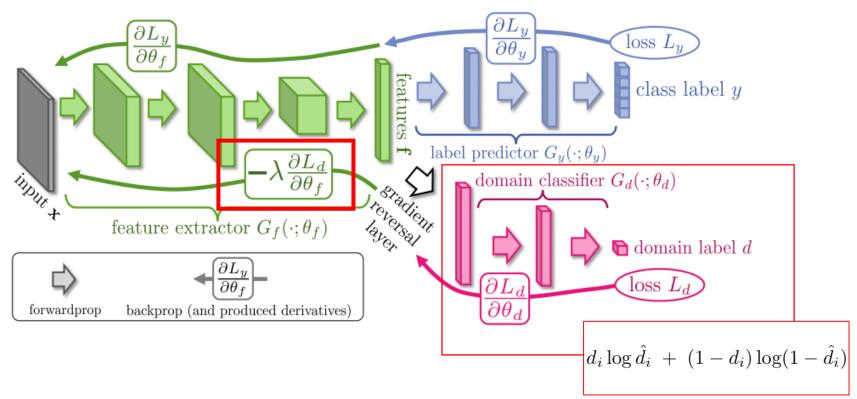


- Simultaneous Deep Transfer Across Domains and Tasks
 - Tzeng et al., ICCV, 2015
 - Soft label loss is additionally introduced.



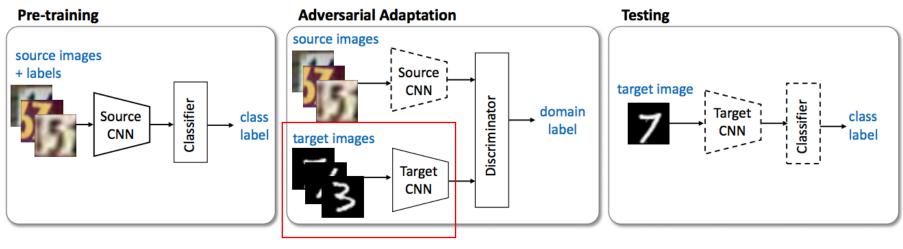
Domain Confusion by Domain-Adversarial Training

- Domain-Adversarial Training of Neural Networks (DANN)
 - Y. Ganin et al., ICML 2015
 - Maximize domain confusion = maximize domain classification loss
 - Minimize source-domain data classification loss



Domain Confusion by Domain-Adversarial Training

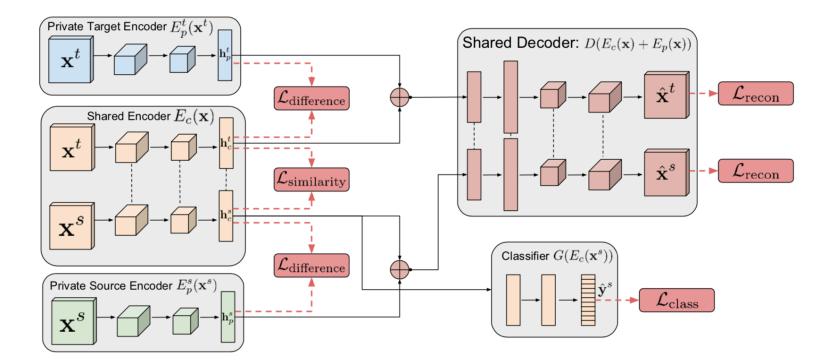
- Adversarial Discriminative Domain Adaptation
 - Tzeng et al., CVPR 2017
 - Maximize domain confusion = maximize domain classification loss
 - Minimize source-domain data classification loss
 - Compared to DANN, a distinct decoder for the target domain is considered.



Not shared weights

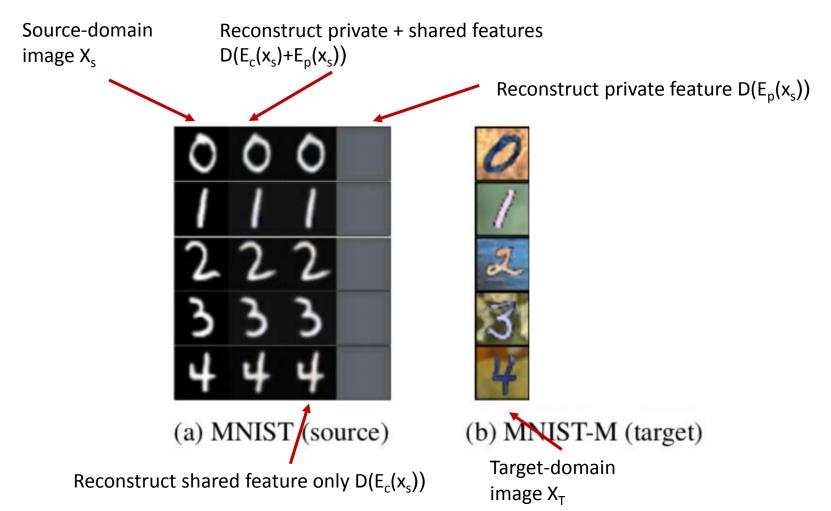
Beyond Domain Confusion

- Domain Separation Network
 - Bousmalis et al., NIPS 2016
 - Separate encoders for domain-invariant and domain-specific features



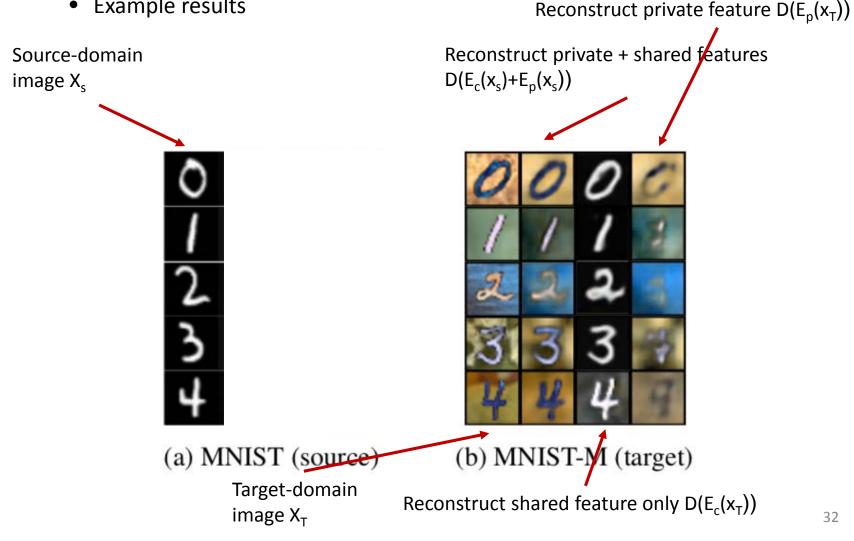
Beyond Domain Confusion

- Domain Separation Network, NIPS 2016
 - Example results

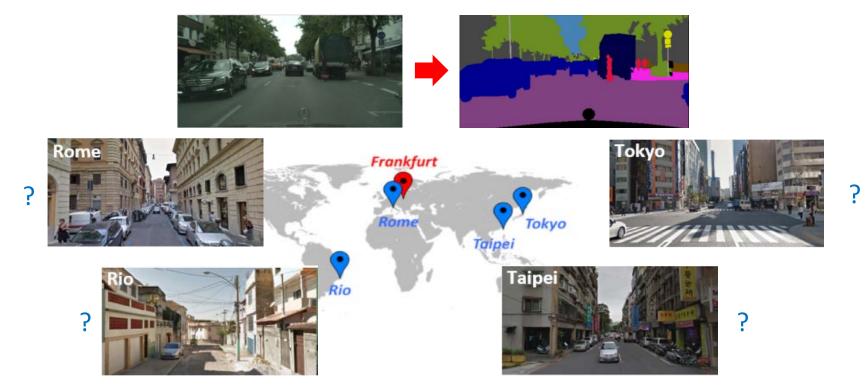


Beyond Domain Confusion

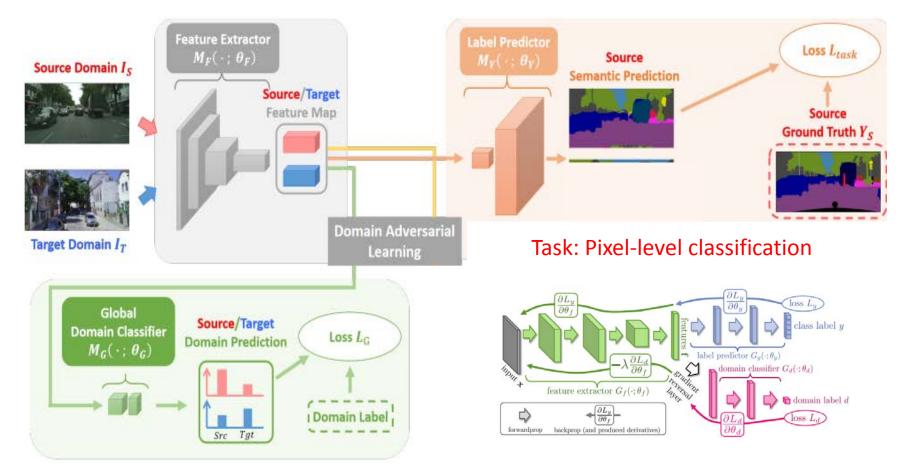
- Domain Separation Network, NIPS 2016 •
 - Example results



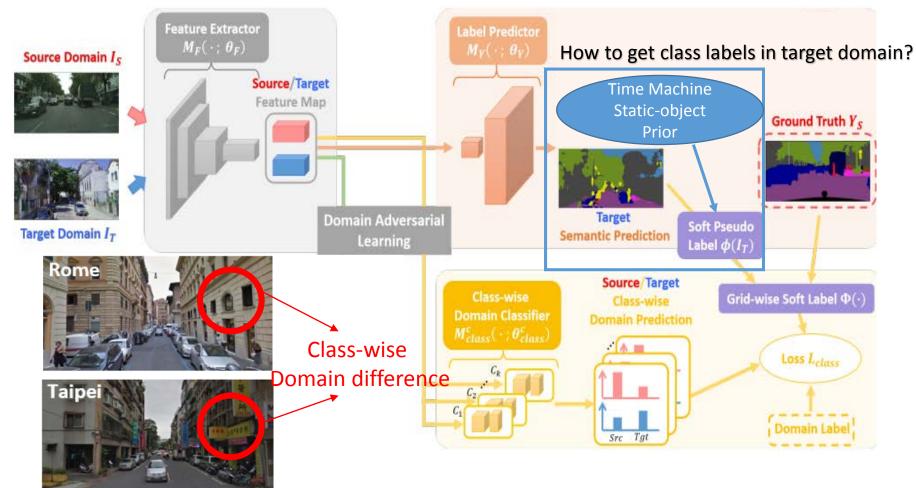
- No More Discrimination: Cross City Adaptation of Road Scene Segmenters
 - Chen et al., ICCV 2017
 - Weakly supervised DA for semantic segmentation



- No More Discrimination: Cross City Adaptation of Road Scene Segmenters
 - Chen et al., ICCV 2017
 - Weakly supervised DA for semantic segmentation



• No More Discrimination: Cross City Adaptation of Road Scene Segmenters



- No More Discrimination: Cross City Adaptation of Road Scene Segmenters
 - Chen et al., ICCV 2017
 - Weakly supervised DA for semantic segmentation
 - Static-object prior from Google Map Time Machine features

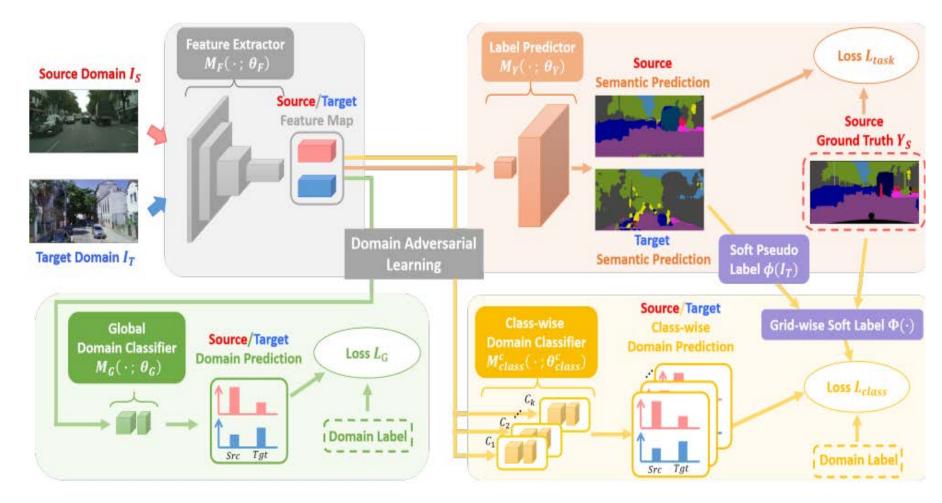
Dense Match

Superpixel

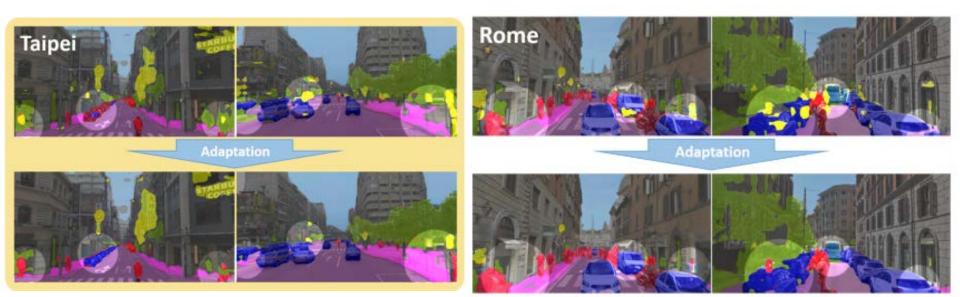
Static classes

87

• No More Discrimination: Cross City Adaptation of Road Scene Segmenters



- No More Discrimination: Cross City Adaptation of Road Scene Segmenters
 - Chen et al., ICCV 2017
 - Weakly supervised DA for semantic segmentation
 - Static-object prior from Google Map Time Machine features
 - Qualitative example results



Transfer Learning for Manipulating Data?

- TL not only addresses cross-domain classification tasks.
- Let's see how we can synthesize and manipulate data across domains.
- As a computer vision guy, let's focus on visual data in this lecture...



Target Domain

What to Cover?

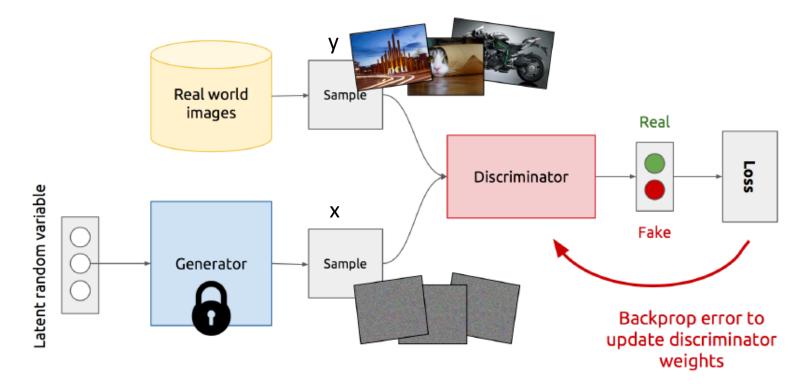
- Cross-Domain Image Translation
 - Pix2pix (CVPR'17)
 - CycleGAN (ICCV'17), DualGAN (ICCV'17), DiscoGAN (ICML'17)
 - UNIT (NIPS'17)
 - DTN (ICLR'17)
 - Beyond image translation

What to Cover in Transfer Learning?

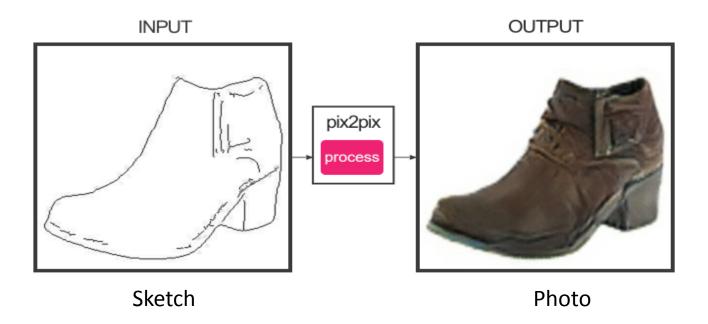
- Cross-Domain Image Translation
 - Pix2pix (CVPR'17): Pairwise cross-domain training data
 - CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
 - UNIT (NIPS'17): Learning cross-domain image representation (with unpaired training data)
 - DTN (ICLR'17) : Learning cross-domain image representation (with unpaired training data)
 - Beyond image translation

A Super Brief Review for Generative Adversarial Networks (GAN)

- Architecture of GAN
 - Loss: $\mathcal{L}_{GAN}(G, D) = \mathbb{E}[\log(1 D(G(x)))] + \mathbb{E}[\log D(y)]$

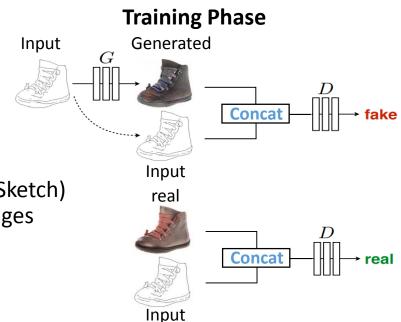


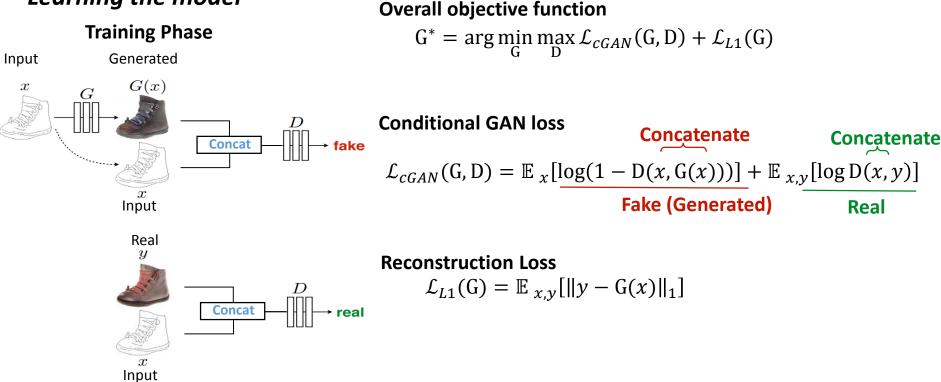
- Image-to-image translation with conditional adversarial networks (CVPR'17)
 - Can be viewed as image style transfer



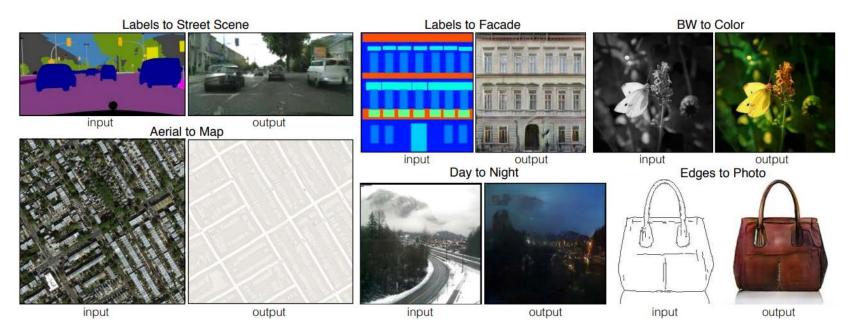
Goal / Problem Setting

- Image translation across two distinct domains (e.g., sketch v.s. photo)
- Pairwise training data
- Method: Conditional GAN
 - Example: Sketch to Photo
 - Generator Input: Sketch Output: Photo
 - Discriminator
 Input: Concatenation of Input(Sketch)
 & Synthesized/Real(Photo) images
 Output: Real or Fake





• Experiment results



Demo page: https://affinelayer.com/pixsrv/

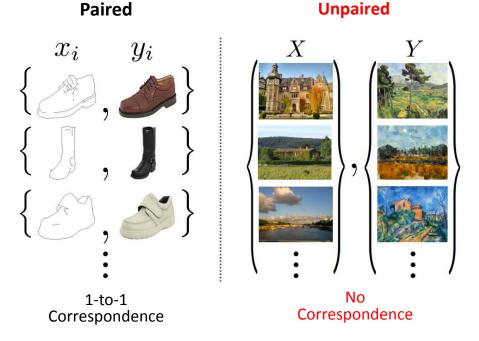
What to Cover?

Cross-Domain Image Translation

- Pix2pix (CVPR'17): Pairwise cross-domain training data
- CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
- UNIT (NIPS'17): Learning cross-domain image representation (with unpaired training data)
- DTN (ICLR'17) : Learning cross-domain image representation (with unpaired training data)
- Beyond image translation
- Representation Disentanglement
 - InfoGAN & AC-GAN: Representation disentanglement in a single domain
 - StarGAN (CVPR'18) : Image translation via representation disentanglement
 - CDRD (CVPR'18) : Cross-domain representation disentanglement and translation

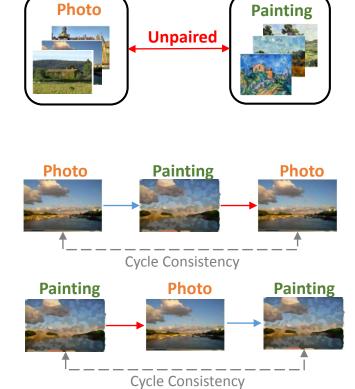
CycleGAN/DiscoGAN/DualGAN

- CycleGAN (CVPR'17)
 - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks -to-image translation with conditional adversarial networks



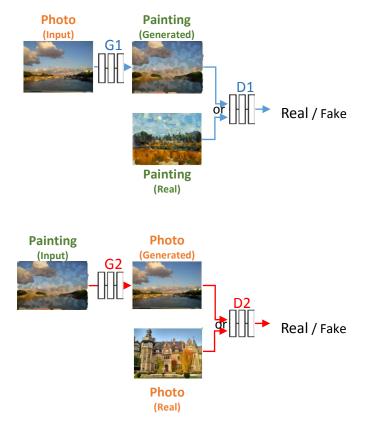
- Easier to collect training data
- More practical

- Goal / Problem Setting
 - Image translation across two distinct domains
 - Unpaired training data
- Idea
 - Autoencoding-like image translation
 - Cycle consistency between two domains

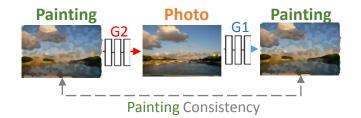


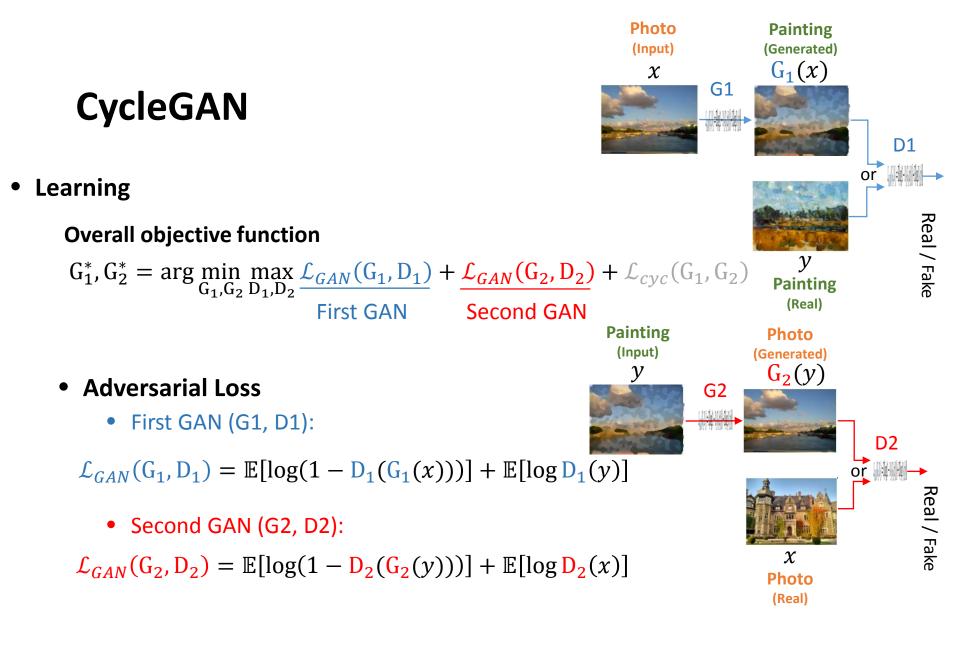
Training data

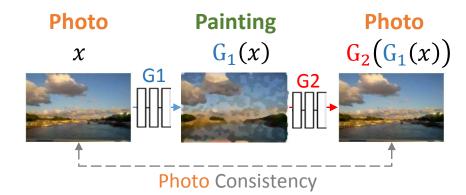
- Method (Example: Photo & Painting)
 - Based on 2 GANs
 - First GAN (G1, D1): Photo to Painting
 - Second GAN (G2, D2): Painting to Photo
 - Cycle Consistency
 - Photo consistency
 - Painting consistency



- Method (Example: Photo vs. Painting)
 - Based on 2 GANs
 First GAN (G1, D1): Photo to Painting
 Second GAN (G2, D2): Photo to Painting
 - Cycle Consistency
 - Photo consistency
 - Painting consistency







• Learning

Overall objective function

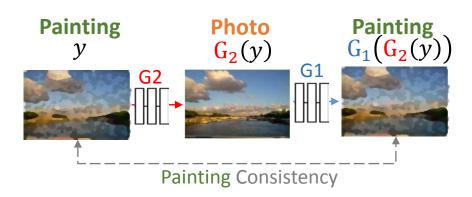
$$G_{1}^{*}, G_{2}^{*} = \arg \min_{G_{1}, G_{2}} \max_{D_{1}, D_{2}} \mathcal{L}_{GAN}(G_{1}, D_{1}) + \mathcal{L}_{GAN}(G_{2}, D_{2}) + \mathcal{L}_{cyc}(G_{1}, G_{2})$$

Cycle Consistency

Consistency Loss

Photo and Painting consistency

 $\mathcal{L}_{cyc}(\mathsf{G}_1,\mathsf{G}_2) = \mathbb{E}\left[\left\| \mathsf{G}_2(\mathsf{G}_1(x)) - x \right\|_1 \right] + \left[\left\| \mathsf{G}_1(\mathsf{G}_2(y)) - y \right\|_1 \right]$



104

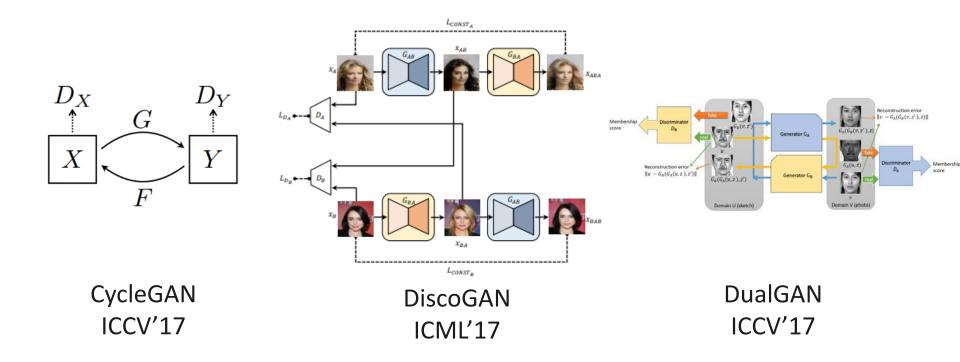
• Example results



Project Page: https://junyanz.github.io/CycleGAN/

Image Translation Using Unpaired Training Data

• CycleGAN, DiscoGAN, and DualGAN



Zhu et al. "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks." *CVPR* 2017.
 Kim et al. "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks.", *ICML* 2017
 Yi, Zili, et al. "Dualgan: Unsupervised dual learning for image-to-image translation." *ICCV* 2017

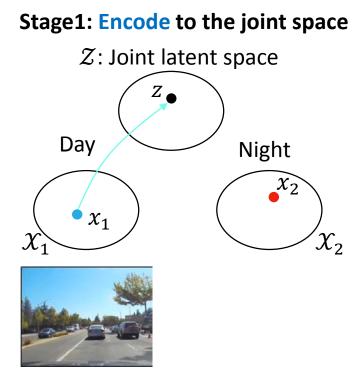
What to Cover in Transfer Learning?

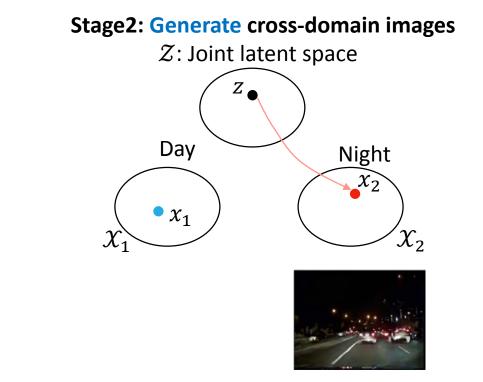
• Cross-Domain Image Translation

- Pix2pix (CVPR'17): Pairwise cross-domain training data
- CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
- UNIT (NIPS'17): Learning cross-domain image representation (with unpaired training data)
- DTN (ICLR'17) : Learning cross-domain image representation (with unpaired training data)
- Representation Disentanglement
 - InfoGAN & AC-GAN: Representation disentanglement in a single domain
 - StarGAN (CVPR'18) : Image translation via representation disentanglement
 - CDRD (CVPR'18) : Cross-domain representation disentanglement and translation

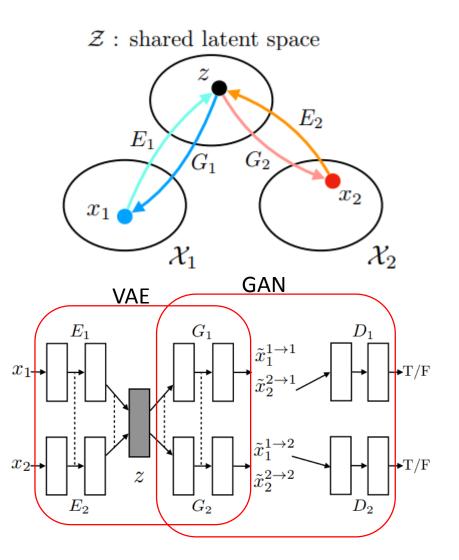
UNIT

- Unsupervised Image-to-Image Translation Networks (NIPS'17)
 - Image translation via learning cross-domain joint representation

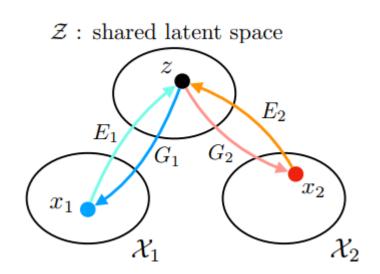


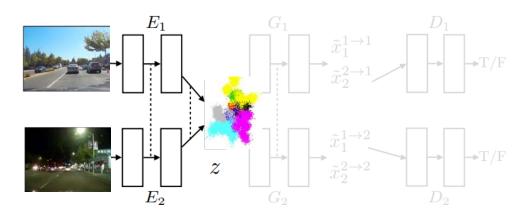


- Goal/Problem Setting
 - Image translation across two distinct domains
 - Unpaired training image data
- Idea
 - Based on two parallel VAE-GAN models

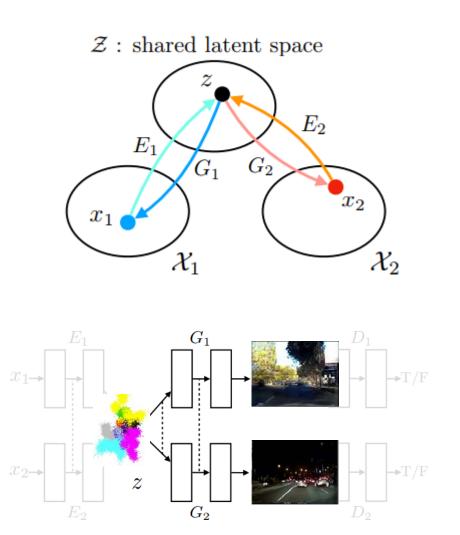


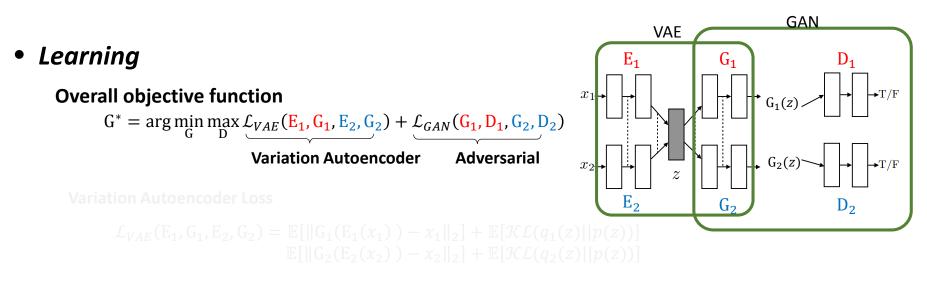
- Goal/Problem Setting
 - Image translation across two distinct domains
 - Unpaired training image data
- Idea
 - Based on two parallel VAE-GAN models
 - Learning of joint representation across image domains





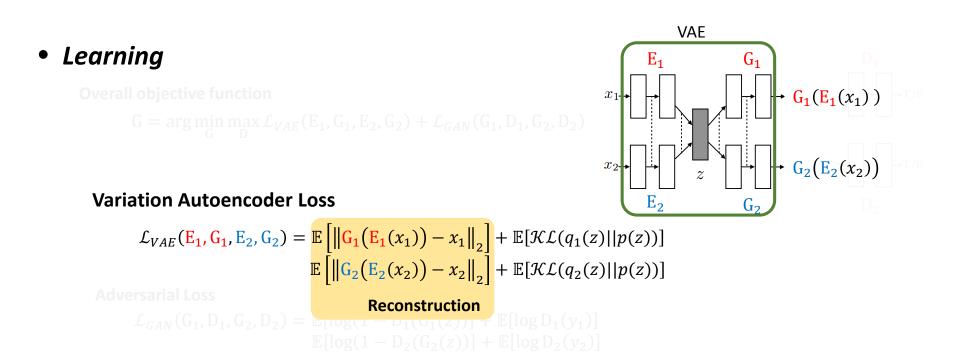
- Goal/Problem Setting
 - Image translation across two distinct domains
 - Unpaired training image data
- Idea
 - Based on two parallel VAE-GAN models
 - Learning of joint representation across image domains
 - Generate cross-domain images from joint representation

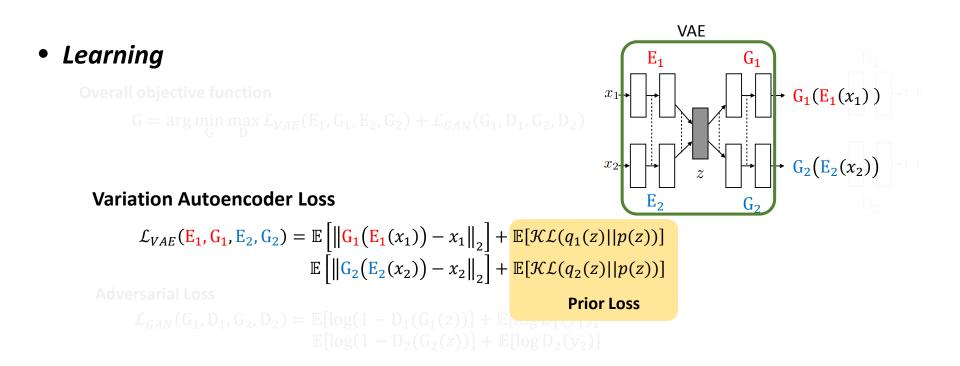




Adversarial Loss

 $\mathcal{L}_{GAN}(G_1, D_1, G_2, D_2) = \mathbb{E}[\log(1 - D_1(G_1(z))] + \mathbb{E}[\log D_1(y_1)]$ $\mathbb{E}[\log(1 - D_2(G_2(z))] + \mathbb{E}[\log D_2(y_2)]$

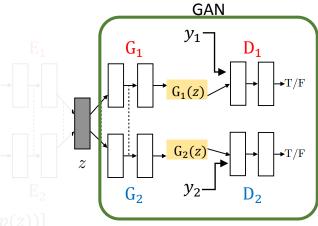




• Learning

Overall objective function

 $G = \arg\min_{C} \max_{D} \mathcal{L}_{VAE}(E_1, G_1, E_2, G_2) + \mathcal{L}_{GAN}(G_1, D_1, G_2, D_2)$



Variation Autoencoder Loss

 $\mathbb{E}[\|G_1(E_1, G_1, E_2, G_2) = \mathbb{E}[\|G_1(E_1(x_1)) - x_1\|_2] + \mathbb{E}[\mathcal{KL}(q_1(z)||p(z))]$ $\mathbb{E}[\|G_2(E_2(x_2)) - x_2\|_2] + \mathbb{E}[\mathcal{KL}(q_2(z)||p(z))]$

Adversarial Loss $\mathcal{L}_{GAN}(G_1, D_1, G_2, D_2) = \frac{\mathbb{E}[\log(1 - D_1(G_1(z))] + \mathbb{E}[\log D_1(y_1)]}{\mathbb{E}[\log(1 - D_2(G_2(z))] + \mathbb{E}[\log D_2(y_2)]}$ Generated

Learning

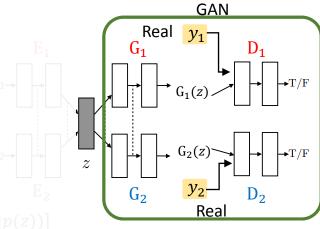
Overall objective function

 $G = \arg\min_{C} \max_{D} \mathcal{L}_{VAE}(E_1, G_1, E_2, G_2) + \mathcal{L}_{GAN}(G_1, D_1, G_2, D_2)$

 $\mathcal{L}_{VAE}(E_1, G_1, E_2, G_2) = \mathbb{E}[||G_1(E_1(x_1)) - x_1||_2] + \mathbb{E}[\mathcal{KL}(q_1(z)||p(z))]$ $\mathbb{E}[||G_2(E_2(x_2)) - x_2||_2] + \mathbb{E}[\mathcal{KL}(q_2(z)||p(z))]$

Adversarial Loss

 $\mathcal{L}_{GAN}(\mathbf{G}_1, \mathbf{D}_1, \mathbf{G}_2, \mathbf{D}_2) = \mathbb{E}[\log(1 - \mathbf{D}_1(\mathbf{G}_1(z))] + \frac{\mathbb{E}[\log \mathbf{D}_1(y_1)]}{\mathbb{E}[\log(1 - \mathbf{D}_2(\mathbf{G}_2(z))] + \frac{\mathbb{E}[\log \mathbf{D}_2(y_2)]}{\mathbf{Real}}$



• Example results

Sunny \rightarrow Rainy

Rainy \rightarrow Sunny

Real Street-view → Synthetic Street-view

Synthetic Street-view → Real Street-view

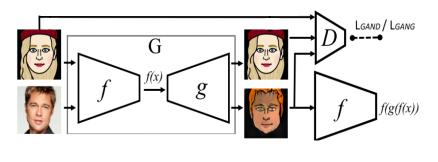
Github Page: https://github.com/mingyuliutw/UNIT

What to Cover?

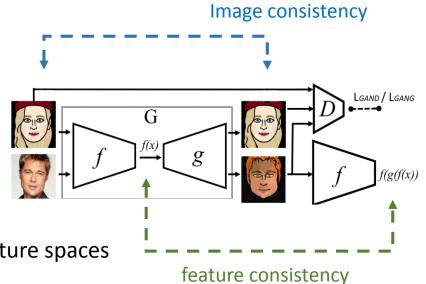
Cross-Domain Image Translation

- Pix2pix (CVPR'17): Pairwise cross-domain training data
- CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
- UNIT (NIPS'17): Learning cross-domain image representation (with unpaired training data)
- DTN (ICLR'17) : Learning cross-domain image representation (with unpaired training data)
- Representation Disentanglement
 - InfoGAN & AC-GAN: Representation disentanglement in a single domain
 - StarGAN (CVPR'18) : Image translation via representation disentanglement
 - CDRD (CVPR'18) : Cross-domain representation disentanglement and translation
- Final Remarks

- Unsupervised Cross-Domain Image Generation (ICLR'17)
- Goal/Problem Setting
 - Image translation across two domains
 - One-way only translation
 - Unpaired training data
- Idea
 - Apply unified model to learn joint representation across domains.



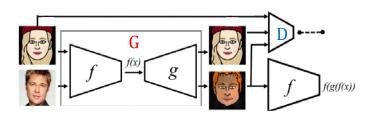
- Unsupervised Cross-Domain Image Generation (ICLR'17)
- Goal/Problem Setting
 - Image translation across two domains
 - One-way only translation
 - Unpaired training data
- Idea
 - Apply unified model to learn joint representation across domains.
 - Consistency observed in image and feature spaces



- Learning
 - Unified model to translate across domains

 $\mathbf{G}^* = \arg\min_{\mathbf{G}} \max_{\mathbf{D}} \mathcal{L}_{img}(\mathbf{G}) + \mathcal{L}_{feat}(\mathbf{G}) + \mathcal{L}_{GAN}(\mathbf{G}, \mathbf{D})$

• Consistency of feature and image space $\mathcal{L}_{img}(G) = \mathbb{E} \left[\left\| g(f(y)) - y \right\|_2 \right]$ $\mathcal{L}_{feat}(G) = \mathbb{E} \left[\left\| f(g(f(x))) - f(x) \right\|_2 \right]$

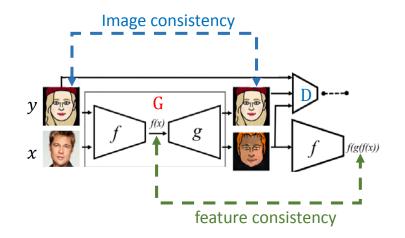


• Adversarial loss $\mathcal{L}_{GAN}(G, D) = \mathbb{E}[\log(1 - D(G(x))] + \mathbb{E}[\log(1 - D(G(y))] + \mathbb{E}[\log D(y)]]$

- Learning
 - Unified model to translate across domains

 $\mathbf{G}^* = \arg\min_{\mathbf{G}} \max_{\mathbf{D}} \mathcal{L}_{img}(\mathbf{G}) + \mathcal{L}_{feat}(\mathbf{G}) + \mathcal{L}_{GAN}(\mathbf{G}, \mathbf{D})$

• Consistency of image and feature space $\mathcal{L}_{img}(\mathbf{G}) = \mathbb{E}\left[\left\|g(f(y)) - y\right\|_{2}\right]$ $\mathcal{L}_{feat}(\mathbf{G}) = \mathbb{E}\left[\left\|f(g(f(x))) - f(x)\right\|_{2}\right]$ $\mathbf{G} = \{f, g\}$



Adversarial loss

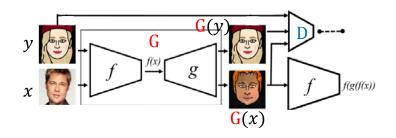
 $\mathcal{L}_{GAN}(\mathsf{G},\mathsf{D}) = \mathbb{E}[\log(1 - \mathsf{D}(\mathsf{G}(x))] + \mathbb{E}[\log(1 - \mathsf{D}(\mathsf{G}(y))] + \mathbb{E}[\log \mathsf{D}(y)]$

• Learning

• Unified model to translate across domains

 $\mathbf{G}^* = \arg\min_{\mathbf{G}} \max_{\mathbf{D}} \mathcal{L}_{img}(\mathbf{G}) + \mathcal{L}_{feat}(\mathbf{G}) + \mathcal{L}_{GAN}(\mathbf{G}, \mathbf{D})$

• Consistency of feature and image space $\mathcal{L}_{img}(G) = \mathbb{E}\left[\left\|g(f(y)) - y\right\|_{2}\right]$ $\mathcal{L}_{feat}(G) = \mathbb{E}\left[\left\|f(g(f(x))) - f(x)\right\|_{2}\right]$



Adversarial loss

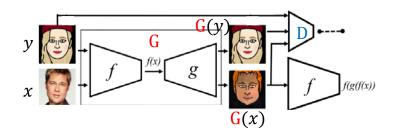
 $\mathcal{L}_{GAN}(\mathbf{G}, \mathbf{D}) = \mathbb{E}[\log(1 - \mathbf{D}(\mathbf{G}(x))] + \mathbb{E}[\log(1 - \mathbf{D}(\mathbf{G}(y))] + \mathbb{E}[\log \mathbf{D}(y)]]$

- Learning
 - Unified model to translate across domains

 $\mathbf{G}^* = \arg\min_{\mathbf{G}} \max_{\mathbf{D}} \mathcal{L}_{img}(\mathbf{G}) + \mathcal{L}_{feat}(\mathbf{G}) + \mathcal{L}_{GAN}(\mathbf{G}, \mathbf{D})$

- Consistency of feature and image space $\mathcal{L}_{img}(\mathbf{G}) = \mathbb{E}\left[\left\|g(f(y)) - y\right\|_{2}\right]$ $\mathcal{L}_{feat}(\mathbf{G}) = \mathbb{E}\left[\left\|f(g(f(x))) - f(x)\right\|_{2}\right]$
- Adversarial loss

 $\mathcal{L}_{GAN}(\mathbf{G}, \mathbf{D}) = \mathbb{E}[\log(1 - \mathbf{D}(\mathbf{G}(x))] + \mathbb{E}[\log(1 - \mathbf{D}(\mathbf{G}(y))] + \mathbb{E}[\log \mathbf{D}(y)]$

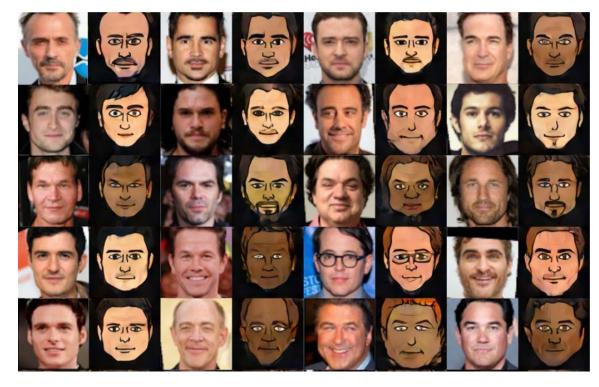


DTN

• Example results

SVHN 2 MNIST

Photo 2 Emoji



Beyond Transfer Learning

Cross-Domain Image Translation

- Pix2pix (CVPR'17): Pairwise cross-domain training data
- CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
- UNIT (NIPS'17): Learning cross-domain image representation (with unpaired training data)
- DTN (ICLR'17) : Learning cross-domain image representation (with unpaired training data)

- InfoGAN & AC-GAN: Representation disentanglement in a single domain
- StarGAN (CVPR'18) : Image translation via representation disentanglement
- UFDN (NIPS'18): A Unified Feature Disentangler for Multi-Domain Image Translation and Maniuplation

Beyond Image Style Transfer: Learning Interpretable Deep Representations

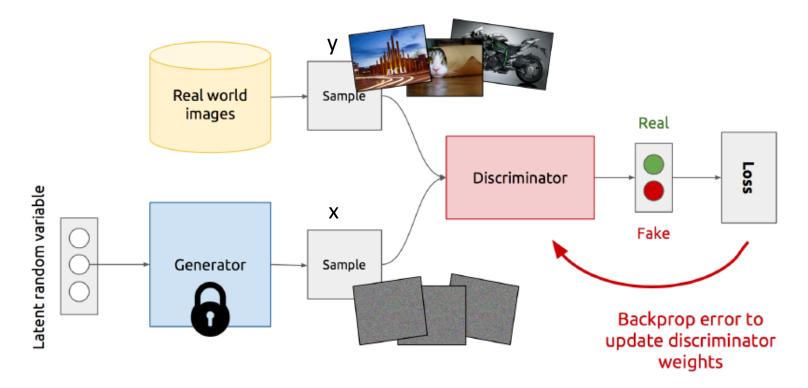
Faceapp – Putting a smile on your face!

- Deep learning for representation disentanglement
- Interpretable deep feature representation

Input Mr. Takeshi Kaneshiro

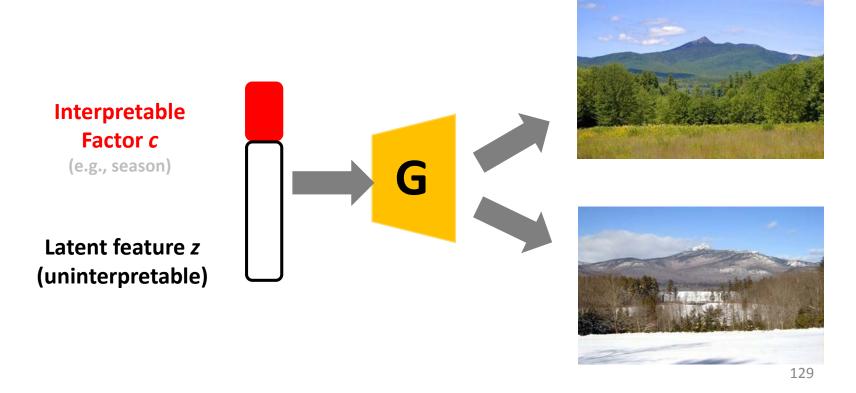
Recall: Generative Adversarial Networks (GAN)

- Architecture of GAN
 - Loss $\mathcal{L}_{GAN}(G, D) = \mathbb{E}[\log(1 D(G(x)))] + \mathbb{E}[\log D(y)]$

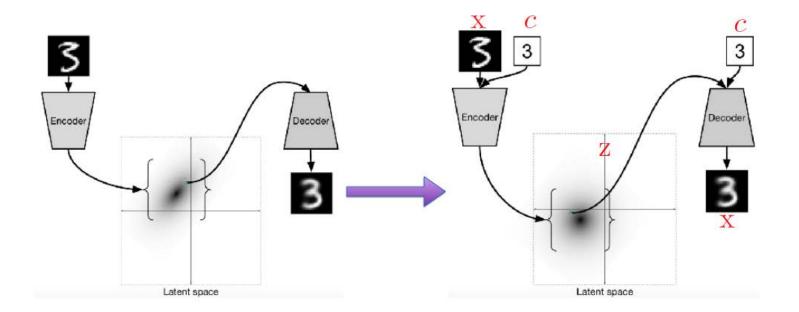


• Goal

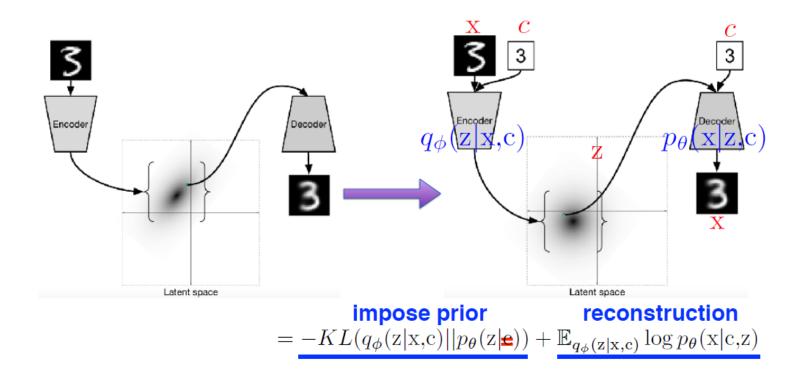
- Interpretable deep feature representation
- Disentangle attribute of interest *c* from the derived latent representation *z*
- Possible solutions: VAE, GAN, or mix of them...



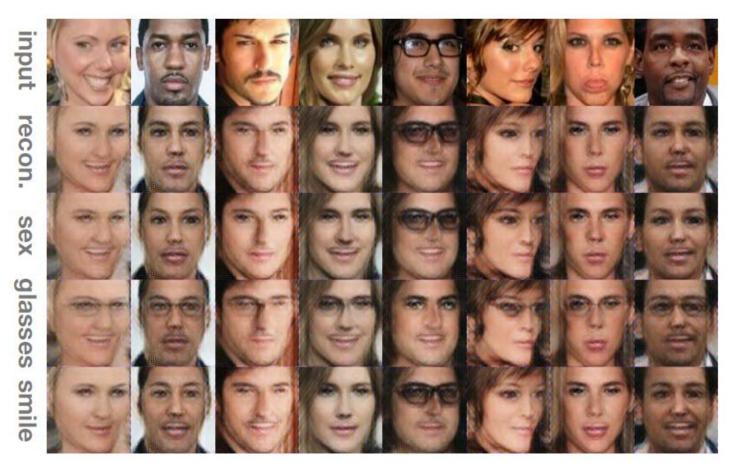
- Goal
 - Interpretable deep feature representation
 - Disentangle attribute of interest *c* from the derived latent representation *z*
 - Supervised setting: from VAE to conditional VAE



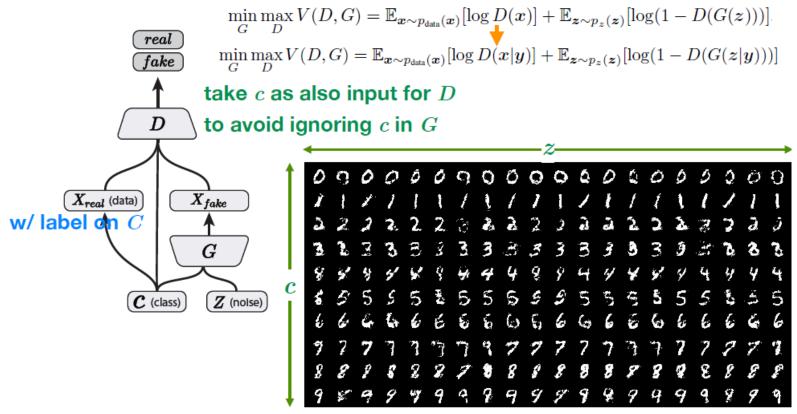
- Conditional VAE
 - Given training data **x** and attribute of interest c, we model the conditional distribution $p_{\theta}(x|c)$.



- Conditional VAE
 - Example Results

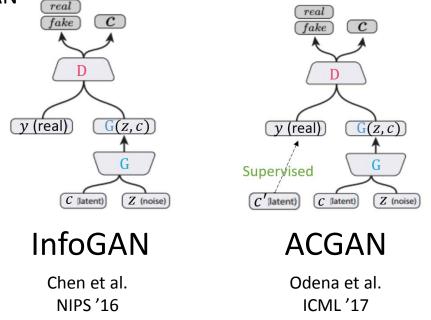


- Conditional GAN
 - Interpretable latent factor *c*
 - Latent representation z



• Goal

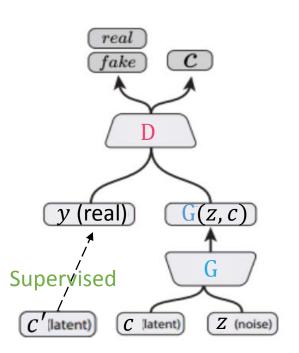
- Interpretable deep feature representation
- Disentangle attribute of interest *c* from the derived latent representation *z*
 - Unsupervised: InfoGAN
 - Supervised: AC-GAN



Chen et al., InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets., NIPS 2016. Odena et al., Conditional image synthesis with auxiliary classifier GANs. ICML'17

AC-GAN

Supervised Disentanglement



- Learning
 - Overall objective function
 - $\mathbf{G}^* = \arg\min_{\mathbf{G}} \max_{\mathbf{D}} \mathcal{L}_{GAN}(\mathbf{G}, \mathbf{D}) + \mathcal{L}_{cls}(\mathbf{G}, \mathbf{D})$
 - Adversarial Loss

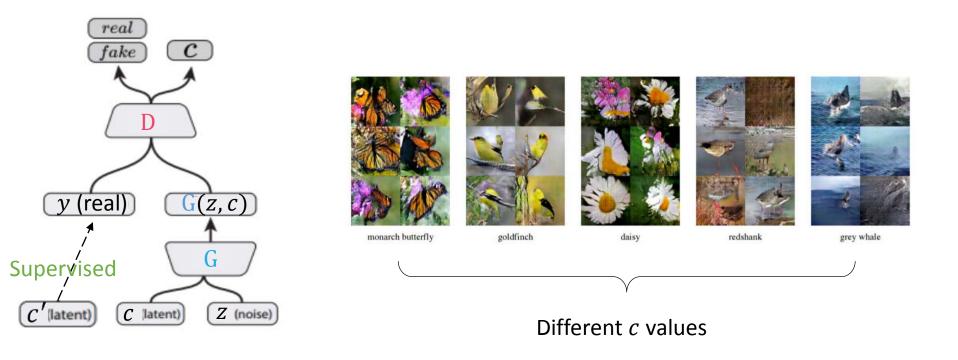
 $\mathcal{L}_{GAN}(\mathbf{G}, \mathbf{D}) = \mathbb{E}[\log(1 - \mathcal{D}(\mathbf{G}(z, c)))] + \mathbb{E}[\log \mathbf{D}(y)]$

• Disentanglement loss

$$\mathcal{L}_{cls}(\mathbf{G}, \mathbf{D}) = \mathbb{E}[-\log D_{cls}(c'|y)] + \mathbb{E}[-\log D_{cls}(c|\mathbf{G}(x,c))]$$
Real data
w.r.t. its domain label
Generated data
w.r.t. assigned label

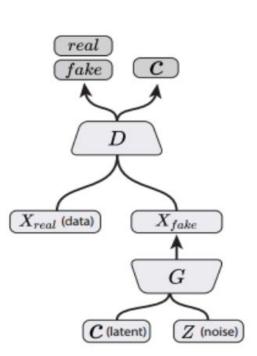
AC-GAN

Supervised Disentanglement



InfoGAN

Unsupervised Disentanglement



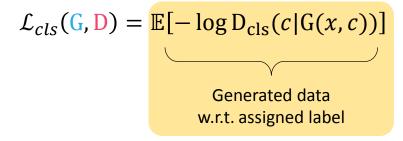
- Learning
 - Overall objective function

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{GAN}(G, D) + \mathcal{L}_{cls}(G, D)$$

Adversarial Loss

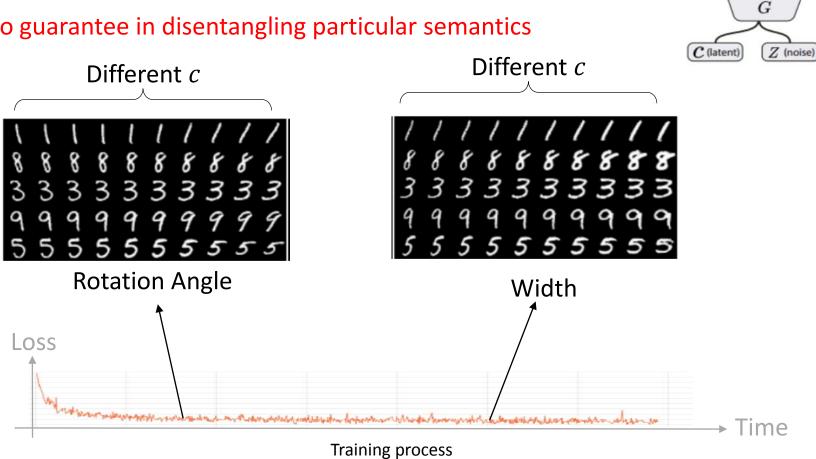
 $\mathcal{L}_{GAN}(\mathsf{G}, \mathsf{D}) = \mathbb{E}[\log(1 - \mathsf{D}(\mathsf{G}(z, c)))] + \mathbb{E}[\log \mathsf{D}(y)]$

• Disentanglement loss



InfoGAN

- Unsupervised Disentanglement
 - No guarantee in disentangling particular semantics



real

fake

 X_{real} (data)

D

C

 X_{fake}

Beyond Transfer Learning

• Cross-Domain Image Translation

- Pix2pix (CVPR'17): Pairwise cross-domain training data
- CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
- UNIT (NIPS'17): Learning cross-domain image representation (with unpaired training data)
- DTN (ICLR'17) : Learning cross-domain image representation (with unpaired training data)

- InfoGAN & AC-GAN: Representation disentanglement in a single domain
- StarGAN (CVPR'18) : Joint image translation and representation disentanglement

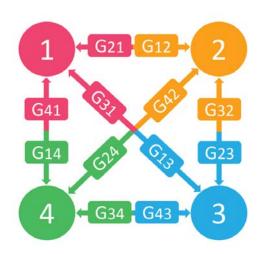
Beyond Transfer Learning

Cross-Domain Image Translation

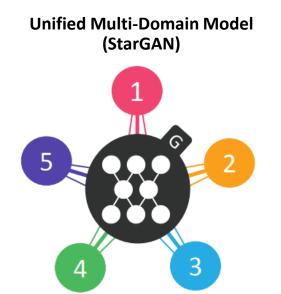
- Pix2pix (CVPR'17): Pairwise cross-domain training data
- CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
- UNIT (NIPS'17): Learning cross-domain image representation (with unpaired training data)
- DTN (ICLR'17) : Learning cross-domain image representation (with unpaired training data)

- InfoGAN & AC-GAN: Representation disentanglement in a single domain
- StarGAN (CVPR'18) : Image translation via representation disentanglement
- UFDN (NIPS'18): A Unified Feature Disentangler for Multi-Domain Image Translation and Maniuplation

- Goal
 - Unified GAN for multi-domain image-to-image translation



Traditional Cross-Domain Models

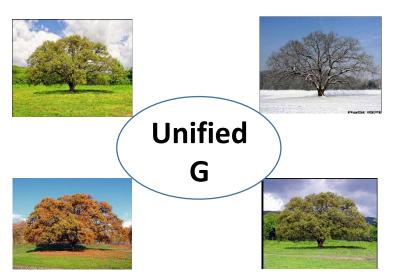


- Goal
 - Unified GAN for multi-domain image-to-image translation

$\begin{array}{c} G_{12} \\ G_{13} \\ G_{23} \\ G_{24} \\ G_{24$

 G_{34}

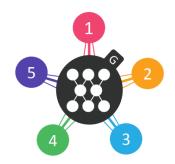
Traditional Cross-Domain Models



Unified Multi-Domain Model (StarGAN)

• Goal / Problem Setting

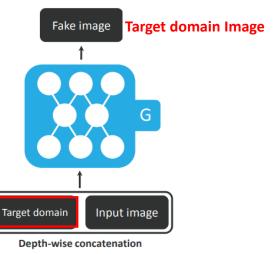
- Single image translation model across multiple domains
- Unpaired training data



- Goal / Problem Setting
 - Single Image translation model across multiple domains
 - Unpaired training data

le 4

- Concatenate image and target domain label as input of generator
- Auxiliary domain classifier on Discriminator

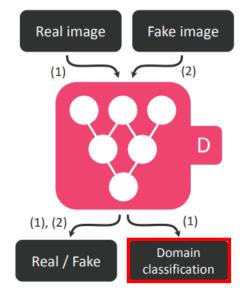


Goal / Problem Setting

- Single Image translation model across multiple domains
- Unpaired training data

• Idea

- Concatenate image and target domain label as input of Generator
- Auxiliary domain classifier as discriminator too



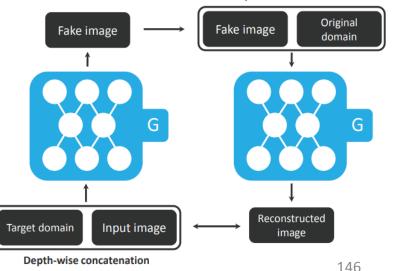
Goal / Problem Setting

- Single Image translation model across multiple domains
- Unpaired training data

• Idea

- Concatenate image and target domain label as in Generator
- Auxiliary domain classifier on Discriminator
- Cycle consistency across domains

Depth-wise concatenation

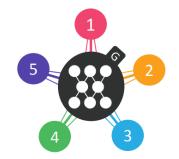


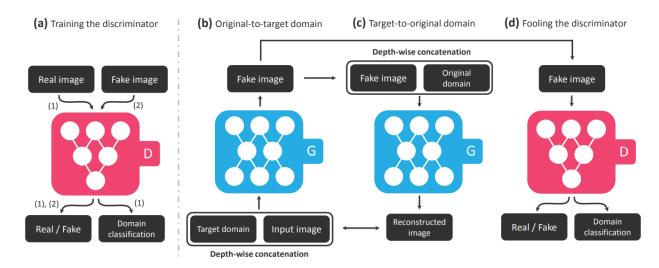
• Goal / Problem Setting

- Single Image translation model across multiple domains
- Unpaired training data

• Idea

- Auxiliary domain classifier as discriminator
- Concatenate image and target domain label as input
- Cycle consistency across domains

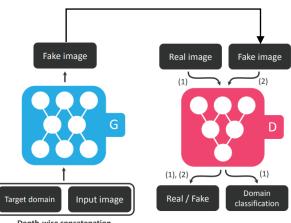




• Learning

Overall objective function

 $G^* = \arg\min_{G} \max_{D} \mathcal{L}_{GAN}(G, D) + \mathcal{L}_{cls}(G, D) + \mathcal{L}_{cyc}(G)$



Depth-wise concatenation

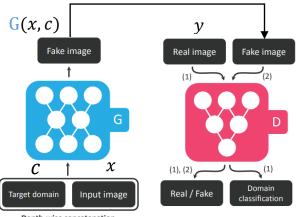
• Learning

Overall objective function

 $G^* = \arg\min_{G} \max_{D} \mathcal{L}_{GAN}(G, D) + \mathcal{L}_{cls}(G, D) + \mathcal{L}_{cyc}(G)$ Adversarial Loss

• Adversarial Loss

$$\mathcal{L}_{GAN}(\mathbf{G}, \mathbf{D}) = \mathbb{E}[\log(1 - \mathcal{D}(\mathbf{G}(x, c)))] + \mathbb{E}[\log \mathbf{D}(y)]$$



Depth-wise concatenation

Learning

Overall objective function

 $\mathcal{L}_{GAN}(G, D) = \mathbb{E}[\log(1 - D(G(x, c)))] + \mathbb{E}[\log D(y)]$

• Domain Classification Loss (Disentanglement)

 $\mathcal{L}_{cls}(\mathbf{G}, \mathbf{D}) = \mathbb{E}[-\log \mathcal{D}_{cls}(c'|y)] + \mathbb{E}[-\log \mathcal{D}_{cls}(c|\mathcal{G}(x, c))]$

(1)

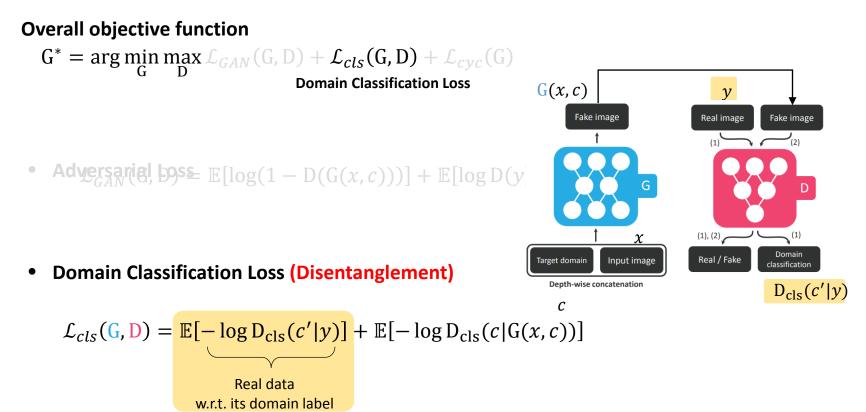
Domain

classificatior

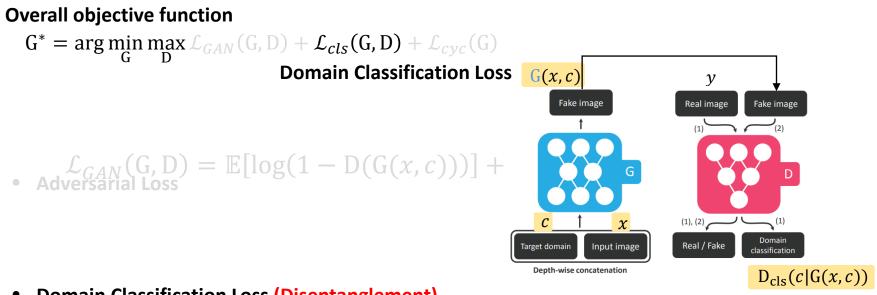
(1), (2)

Real / Fake

Learning



Learning



Domain Classification Loss (Disentanglement)

$$\mathcal{L}_{cls}(\mathbf{G}, \mathbf{D}) = \mathbb{E}[-\log \mathcal{D}_{cls}(c'|y)] + \mathbb{E}[-\log \mathcal{D}_{cls}(c|\mathbf{G}(x,c))]$$

Generated data w.r.t. assigned label

• Learning

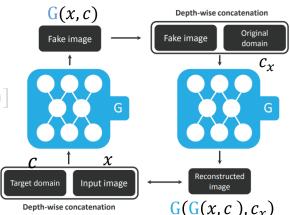
Overall objective function

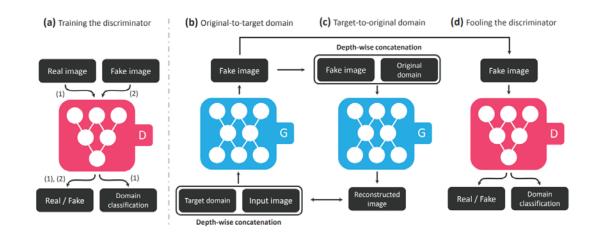
 $G^* = \arg\min_{G} \max_{D} \mathcal{L}_{GAN}(G, D) + \mathcal{L}_{cls}(G, D) + \mathcal{L}_{cyc}(G)$ Consistency Loss

• Adversarial Loss
$$\mathcal{L}_{GAN}(G, D) = \mathbb{E}[\log(1 - D(G(x, c)))] + \mathbb{E}[\log D(y)]$$

- Dom $Ei_{cls}(G_sD)$ ation Loss (Disentanglement) = $\mathbb{E}[-\log D_{cls}(c'|y)] + \mathbb{E}[-\log D_{cls}(c|G(x,c))]$
- Cycle Consistency Loss

 $\mathcal{L}_{cyc}(\mathbf{G}) = \mathbb{E}[\|\mathbf{G}(\mathbf{G}(x,c),c_x) - x\|_1]$





• Learning

Overall objective function

 $\mathbf{G}^* = \arg\min_{\mathbf{G}} \max_{\mathbf{D}} \mathcal{L}_{GAN}(\mathbf{G}, \mathbf{D}) + \mathcal{L}_{cls}(\mathbf{G}, \mathbf{D}) + \mathcal{L}_{cyc}(\mathbf{G})$

Adversarial Loss

StarGAN

 $\mathcal{L}_{GAN}(G, D) = \mathbb{E}[\log(1 - D(G(x, c)))] + \mathbb{E}[\log D(y)]$

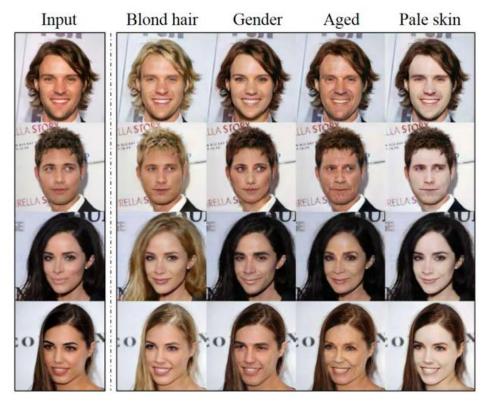
• Domain Classification Loss

 $\mathcal{L}_{cls}(G, D) = \mathbb{E}[-\log D_{cls}(c'|y)] + \mathbb{E}[-\log D_{cls}(c|G(x, c))]$

• Cycle Consistency Loss

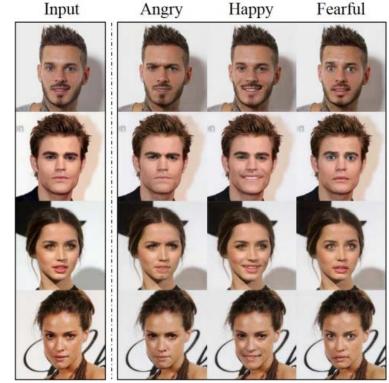
 $\mathcal{L}_{cyc}(\mathbf{G}) = \mathbb{E}[\|\mathbf{G}(\mathbf{G}(x,c),c_x) - x\|_1]$

- Example results
 - StarGAN can somehow be viewed as a representation disentanglement model, instead of an image translation one.



Multiple Domains

Multiple Domains



Github Page: https://github.com/yunjey/StarGAN

Beyond Transfer Learning

Cross-Domain Image Translation

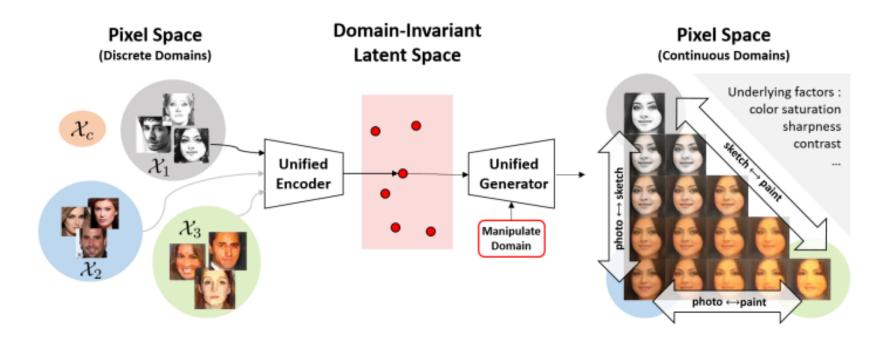
- Pix2pix (CVPR'17): Pairwise cross-domain training data
- CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
- UNIT (NIPS'17): Learning cross-domain image representation (with unpaired training data)
- DTN (ICLR'17) : Learning cross-domain image representation (with unpaired training data)

Representation Disentanglement

- InfoGAN & AC-GAN: Representation disentanglement in a single domain
- StarGAN (CVPR'18) : Image translation via representation disentanglement
- UFDN (NIPS'18): A Unified Feature Disentangler for Multi-Domain Image Translation and Maniuplation

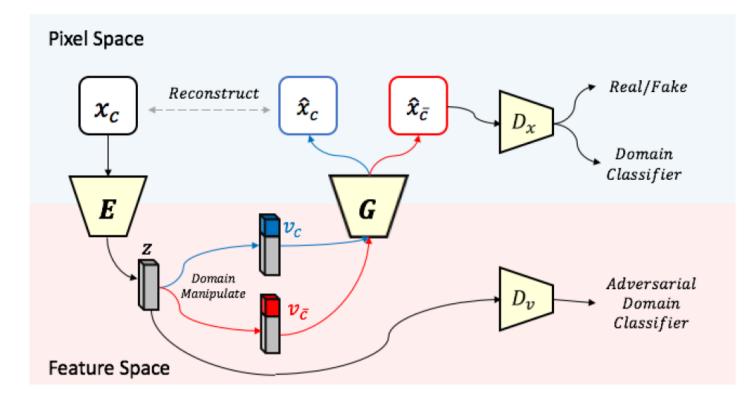
A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation

• Learning interpretable representations



A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation

• Learning interpretable representations



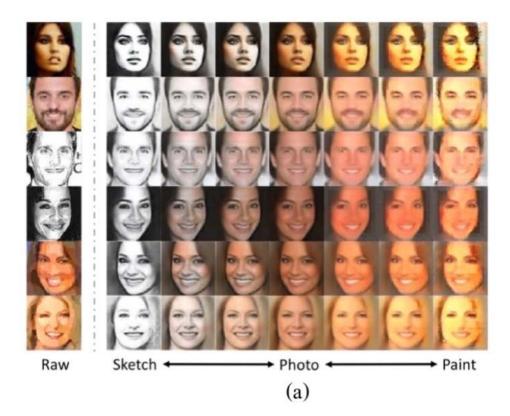
A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation

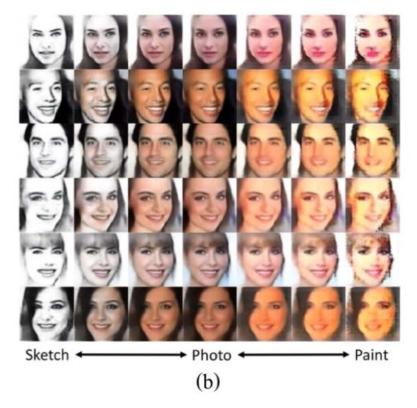
• Learning interpretable representations

	Unpaired data	Bidirectional translation	Unified structure	Multiple domains	Joint representation	Feature disentanglement
Pix2Pix [10]	-	-	-	-	-	-
CycleGAN [30]	\checkmark	\checkmark	-	-	-	-
StarGAN [4]	\checkmark	\checkmark	\checkmark	\checkmark	-	-
DTN [24]	\checkmark	-	-	-	\checkmark	-
UNIT [16]	\checkmark	\checkmark	-	-	\checkmark	-
E-CDRD [18]	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark
UFDN (Ours)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓

Example Results

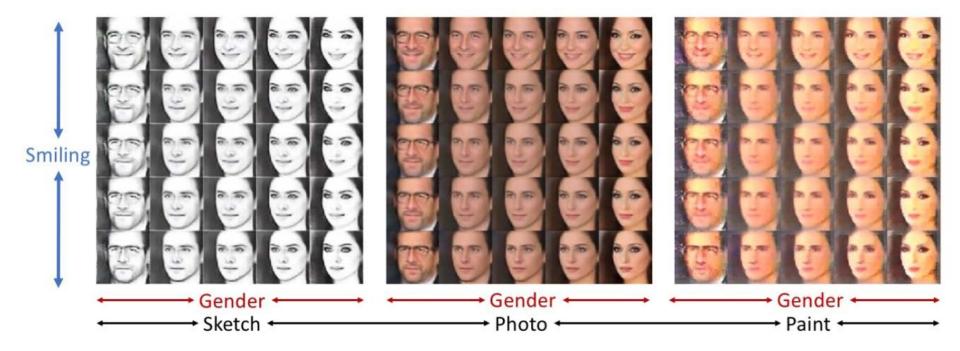
• Face image translation





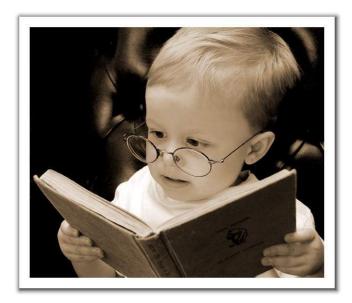
Example Results

• Multi-attribute image translation



What Have We Covered in Today's Lecture?

- Brief Review to CV/ML Backgrounds
- Recent Advances in Deep Learning for Computer Vision
- Transfer Learning and Representation Disentanglement



Resources

- http://deeplearning.net/
 - Hub to many other deep learning resources
- https://github.com/ChristosChristofidis/awesome-deep-learning
 - A resource collection deep learning
- https://github.com/kjw0612/awesome-deep-vision
 - A resource collection deep learning for computer vision
- http://cs231n.stanford.edu/syllabus.html
 - Nice course on CNN for visual recognition
- http://deeplearning.ai
 - Lots of online course videos by Andrew Ng
- http://vllab.ee.ntu.edu.tw/dlcv.html
 - DLCV course at NTU

Vision & Learning Lab at NTU

http://vllab.ee.ntu.edu.tw/

Thank You!