

MLSS Summer School Aug 2, 2021

Large scale learning and planning in reinforcement learning

Csaba Szepesvári DeepMind & University of Alberta

- Goal: Understanding of what RL algorithms can and cannot do.
- How? Theoretical insights

Contents

- 1. Big picture recap
- 2. Foundations: Planning in finite MDPs
- Online learning in finite MDPs
- 4. Planning in large MDPs
- 5. Batch RL
- 6. What now?

BIG PICTURE RECAP

/////

Getting the big picture right

$RL\subseteq ML\subseteq CS$

Goal: Algorithm design

What do we want from our algorithms?

- generality
- soundness or effectiveness
- efficiency

RL algos: past data → actions

Algo+problem instance → (did it work? resource use?)

What makes an algorithm a good one? "Best on **all** instances!?"

Hyperparameters?

Algorithm + hyperparameters ≠ algorithm! "Algorithm family"

Questions studied

- Does the family have a "good member"?
- How to choose the hyperparameters? (To get an algorithm!)

Theoretical vs. empirical work

Empirical work (in RL/CS)

Use benchmarks to evaluate/compare/analyze algorithms Modify algorithms to get better performance on benchmarks Modify benchmarks to create new challenges

Theoretical work

Replace benchmarks with problem classes described by their properties

Advantage: Infinitely many instances!

Brain vs. computation

Application work is separate from these. Instance is fixed!!

Empirical work

Unique limitations/problems

- Limited by compute power
- Limited scope
- Reproducibility, soft claims

Unique merits

- Accessibility
- Problem choice often more obvious

Theory work

Unique limitations/problems

- Limited by brainpower,
- Lost in beauty
- Lost in detail

Unique merits

- Truths values are absolute and permanent
- Can prove impossibility
- Transparency, clarity

Common issues

• "overfitting" to the problem class/benchmark sets

Activities

- Problem oriented analysis
- Algorithm oriented analysis

Problem oriented analysis

Complexity: Characterize resource needs to solve instances in a problem class

Prescriptive

Given problem class and metrics, find an algorithm that is "best"/"good enough"

election at the end -add _ob.select= 1 er_ob.select=1 ntext.scene.objects.activ Selected" + str(modifie irror_ob.select = 0 bpy.context.selected_ob ata.objects[one.name].selected_ob ata.objects[one.name].selected_ob

int("please select exactle

- OPERATOR CLASSES

wpes.Operator): X mirror to the selecter ject.mirror_mirror_x" ror X" ontext): ontext): xt.active_object is not Algorithm oriented analysis

- Just descriptive, never prescriptive
- Starts with an algorithm

 \triangleright

Does A work at all?

- On which instances?
- Analyze resource needs

Why do theory?

Theory as sanity check

- Are there any conditions when your shiny new, greatest and latest alg A provably works?
- Does it work on tabular (simple) problems?

Benchmarking with theory

• How well does alg A do relative to the competition?

Understanding theoretical works

What is the problem considered? (some "RL theory" papers are guilty of skipping this)

What is the result? (theorem!)

Conditions/hypothesis/antecedent Conclusion/consequent

What is the context?

Why was the theorem produced? Produced in this form? Could it hold more generally?

foundations for RL

- General lessons:
 - At the heart of RL is search helped by structure
 - With no or little structure, algorithms need to work hard
 - MDPs give some structure, but more structure is needed for scaling up

Control problems

Markov Decision Processes:

- Stochastic state transitions
- Control goal is to maximize total (discounted/undiscounted) reward
- State (and rewards) are available for measurement

Markov Decision Processes & Planning

$$M = (S, \mathcal{A}, P, r, \gamma)$$

$$S = \{1, 2, \dots, S\}, \mathcal{A} = \{1, 2, \dots, A\}$$

$$P = (P(s, a))_{s, a}, r = (r(s, a))_{s, a}$$

 $\pi: \mathcal{S} \to \Delta(\mathcal{A}) \text{ (feedback) policies}$ $\nu^{\pi}(s) = \mathbb{E}_{s}^{\pi} [\Sigma_{t=0}^{\infty} \gamma^{t} r(S_{t}, A_{t})]$

 $v^*(s) = \max_{\pi} v^{\pi}(s)$

Objective: find π s.t. $v^{\pi} \approx v^{*}$

Why discounting?

"Solve" MDP: find $v \approx v^*$ and use $\pi(s) = \operatorname{argmax}_a r(s, a) + \gamma \langle P(s, a), v \rangle$

Why care about tabular MDP results?

- 1. Don't build on sand (definitions, ..)
- 2. Clever abstractions may give finite MDPs
- 3. Results demonstrate fundamental, algorithm independent limitations

Problem settings

def getpolicy(P, r, δ):

offline planning table-based input

... return $\pi \# \pi \in [A]^{[S]}$, $v^{\pi} \ge v^* - \delta \mathbf{1}$.

def getpolicy(simulator, δ , ξ):

offline planning random access simulator

(S,A) := simulator.problemsize()

...

 $(s',r') := simulator.gen(s,a) \# s \in [S], a \in [A], s' \sim P(s,a), r' = r(s,a)$

return $\pi \# \pi \in [A]^{[S]}$, $v^{\pi} \ge v^* - \delta \mathbf{1}$ with probability of at least $1 - \xi$.

Problem settings

def getaction(simulator,
$$s_0$$
, δ , ξ):online planning
random access simulator(S,A) := simulator.problemsize()...
(s',r') := simulator.gen(s,a) # $s \in [S], a \in [A]$...
return $a # a \in [A]$ s.t. for the policy π induced, $v^{\pi} \ge v^* - \delta \mathbf{1}$ w.p. $\ge \xi$

def getaction(simulator, s_0 , δ , ξ):

online planning local access simulator

```
A := simulator.num_actions()
```

• • •

 $(s',r') := simulator.gen(s,a) # s: state previously seen, a \in [A]$

• • •

return $a \# a \in [A]$ s.t. for the policy π induced, $v^{\pi} \ge v^* - \delta \mathbf{1}$ w.p. $\ge \xi$

Settings

Planning is

• offline or online

MDP is specified with

- matrices (=tables)
- simulator with
 - Random access to state-actions
 - Local access to state-actions

Computation model:

- Turing (#bits matter)
- Real RAM model

2

)

def policy_iteration(P, r, δ): # getpolicy fn $\pi \coloneqq \text{arbitrary}, k \coloneqq 0, H \coloneqq 1/(1 - \gamma)$ while $\gamma^{k} H > \delta$: for all $s \in [S]$: $\pi'(s) \coloneqq \operatorname{argmax}_a r(s, a) + \gamma \langle P(s, a), v^{\pi} \rangle$ $\pi \coloneqq \pi'$, $k \coloneqq k + 1$

return π

Shorthand: $\pi' \coloneqq \Gamma v^{\pi}$

$$v^{\pi} = r_{\pi} + \gamma P_{\pi} v^{\pi}$$
$$=: T_{\pi} v^{\pi}$$

def value_iteration(P, r, δ): # getpolicy fn $v \coloneqq 0, k \coloneqq 0, H \coloneqq 1/(1-\gamma)$ while $\gamma^k H > \delta$: for all $s \in [S]$: $v'(s) \coloneqq \max_{a} r(s, a) + \gamma \langle P(s, a), v \rangle$ $v \coloneqq v'$ return Γv

Shorthand: $v' \coloneqq Tv$

Fundamental theorem

$$Let \|v\| = \max_{s} |v(s)|$$

Theorem (contractions). The following hold:

- *1.* $\forall u, v, \pi || T_{\pi}u T_{\pi}v || \leq \gamma || u v ||$
- $2. \quad \forall u, v \qquad \|Tu Tv\| \leq \gamma \|u v\|$

Banach's fixed point theorem.

For any contraction map T over a $\|\cdot\|$ -complete vector space, $T^n u \rightarrow v^*$, the unique fixed point of T.

Fundamental theorem

Theorem

The following holds true in any finite MDP:

- 1. Any policy that is greedy with respect to v^* is optimal
- 2. It holds that $v^* = Tv^*$

Proof sketch:

Step 1: From $v^{\pi} \leq v^*$, $v^{\pi} = T_{\pi}v^{\pi} \leq T_{\pi}v^* \Rightarrow v^* \leq Tv^*$ Step 2: For $\pi = \Gamma v^*$, $T_{\pi}v^* = Tv^* \geq v^*$ $\Rightarrow v^* \geq v^{\pi} \leftarrow T_{\pi}^n v^* \geq v^*$ $\Rightarrow v^* = v^{\pi} = T_{\pi}v^{\pi} = T_{\pi}v^* = Tv^*$

Qu.e.d

Global planning when MDP given with matrices

$$H = \frac{1}{1 - \gamma}$$

Policy iteration [Ye, 2011; Scherrer, 2016]

 $H \cdot {SA \land \log(H^2/\delta)} \cdot (SA + S^2 + S^{2.373})$ operations are sufficient to produce a δ optimal policy

Value iteration [folklore]

 $H \log(H^2/\delta)S^2A$ operations are sufficient to produce a δ -optimal policy

 $a \wedge b \coloneqq \min(a, b)$

 $a \wedge b \coloneqq \min(a, b)$

Tractability of planning in MDPs

MDP given with a table

Query complexity: $\Omega(S^2A)$

Any algorithm that can find $\delta = 1$ suboptimal policies needs $\Omega(S^2A)$ steps on some MDP [Chen & Wang'17]

P(s' s,a) (s,a)↓ <i>s</i> ' →	3	4	5	6
(1,1)	1	0	0	0
(1,2)	1	0	0	0
(1,3)	0	0	0	1
(2,1)	1	0	0	0
(2,2)	0	0	1	0
(2,3)	1	0	0	0

 $\pi^*(1) = 3, \pi^*(2) = 2$

 $H \approx \frac{\log(1/\delta)}{1}$

Simulation optimization

• Global planning, MDP given with a random-access simulator

Query complexity: $\tilde{\Theta}(SAH^3/\delta^2)$ [Azar et al '13]

Local planning, MDP given with a local-access simulator

Query complexity: $\Omega(A^H)$, $O((H^7A/\delta^2)^H)$ [Kearns et al., '02] No dependence on *S*, but exponential dependence on *H*.

Statistical uncertainty

What did we learn so far?

Value iteration and policy iteration have complementary strengths

Sampling can help reduce complexity

All algorithms suffer from one of the following "curses":

- exponential in H complexity
- linear complexity in SA

Large problems: $SA \land H$ is large

online learning

- Not all exploration strategies are born equal
- General lessons:
 - Exploration is separate from optimization
 - But everything is just optimization
 - If adaptivity is the goal, optimism is the answer, while epsilon-greedy falls short
 - why regret is more meaningful than reward for comparing algorithms

Problem settings

R_t

Performance metric

Total (expected) reward

 $V_T(\mathcal{A}, M) \coloneqq \mathbb{E}_{\mathcal{A}, M}[\Sigma_{t=1}^T r(S_t, A_t)]$

Goal: Find a single algorithm \mathcal{A} that achieves as much reward as it is possible no matter the MDP M that the algorithm interacts with.

Say, $M \in \mathcal{M}$ is an MDP with *S* states, *A* actions, rewards in [0,1].

Perhaps this?

$$V_{\mathrm{T}}^* \coloneqq \max_{\mathcal{A}} \min_{M \in \mathcal{M}} V_{T}(A, M)$$

Does this make sense? Why or why not?

Performance metric: Second attempt

 $\forall \mathcal{A}: \min_{M \in \mathcal{M}} V_T(\mathcal{A}, M) = 0 = V_T^*$

$$r \equiv 0 \Rightarrow V_T(\mathcal{A}, M) = 0$$

Uninteresting M!

Big idea (Savage, Wald, 1950-51): Metric should express how much an algorithm loses compared to the best specialized algorithm!

Regret:

$$R_T(\mathcal{A}, M) \coloneqq \max_{\mathcal{A}'} V_T(\mathcal{A}', M) - V_T(\mathcal{A}, M)$$

 $\underline{\text{Minimax regret}}: R_T^* = \min_{\mathcal{A}} \max_{M \in \mathcal{M}} R_T(\mathcal{A}, M)$

Algorithm design = multiobjective optimization

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, et al. 2015. "Human-Level Control through Deep Reinforcement Learning." *Nature* 518 (7540): 529–33.

Our troubles continue: Fix $S \ge 3, A \ge 2$ $\forall \mathcal{A} \exists M \in \mathcal{M}_{S,A}$ s.t. $T\left(1-\frac{1}{A}\right) \le R_T(\mathcal{A}, M) \le T \ \forall \mathcal{A}$

oops.. Why? Traps!

Commute time/diameter: $diam(M) = \max_{s,s' \in [S]} \min_{\pi} d_{\pi,M}(s,s')$

Suggestion: Swap $\mathcal{M}_{S,A}$ with $\mathcal{M}_{D,S,A}$ where

$$\mathcal{M}_{D,S,A} = \{ M \in \mathcal{M}_{S,A} : \operatorname{diam}(M) \le D \}$$

<u>Theorem</u> (Jaksch, Ortner, Auer, 2010): For some $0 < c \leq c'$, for any $T \geq 1$, $D \geq 6 + 2\log_A S$, $S \geq 3$, $A \geq 2$,

$$c(\sqrt{DSAT} \wedge T) \leq R_T^*(\mathcal{M}_{D,S,A}) \leq c'DS\sqrt{AT\log(SAT)}$$

How to read this result?

What next? Remove log? Close \sqrt{DS} gap?

Lower bound

S=8 A=2 $\delta \approx 1/D$

1: Input
$$S, A, r, \delta \in (0, 1)$$

2: $t = 0$
3: for $k = 1, 2, ...$ do
4: $\tau_k = t + 1$
5: Find π_k as the greedy policy with respect to v_k satisfying Eq. (38.16)
6: do
7: $t \leftarrow t + 1$, observe S_t and take action $A_t = \pi_k(S_t)$
8: while $T_t(S_t, A_t) < 2T_{\tau_k - 1}(S_t, A_t)$
9: end for

$$\rho_{k} + v_{k}(s) = \max_{a \in \mathcal{A}} r_{a}(s) + \langle P_{k,a}(s), v_{k} \rangle \text{ for all } s \in \mathcal{S} \text{ and } a \in \mathcal{A},$$

$$\rho_{k} = \max_{s \in \mathcal{S}} \max_{\pi \in \Pi_{\text{DM}}} \max_{P \in \mathcal{C}_{\tau_{k}}} \rho_{s}^{\pi}(P),$$

$$\hat{P}_{t,a}(s,s') = \frac{\sum_{u=1}^{t} \mathbb{I}\{S_{u} = s, A_{u} = a, S_{u+1} = s'\}}{1 \lor T_{t}(s,a)} \qquad T_{t}(s,a) = \sum_{u=1}^{t} \mathbb{I}\{S_{u} = s, A_{u} = a\}$$
(38.16)

$$\mathcal{C}_{t}(s,a) = \left\{ P \in \mathcal{P}(\mathcal{S}) : \|P - \hat{P}_{t-1,a}(s)\|_{1} \le \sqrt{\frac{\mathrm{S}L_{t-1}(s,a)}{1 \vee T_{t-1}(s,a)}} \right\} \qquad \qquad L_{t}(s,a) = 2\log\left(\frac{4\mathrm{S}AT_{t}(s,a)(1 + T_{t}(s,a))}{\delta}\right)$$

Optimism vs. forced exploration

<u>Forced exploration</u> Systematically or randomly explore the actions for some portion of time

<u>Optimism</u>

Act as if the environment was the best among those that are plausible given the data so far

Scaling up?

- Lower bound is clear: Without further assumptions, we hit a wall
- One possible avenue: Value function approximation

• We do it in planning first!

function approximation

- Function approximation is why RL algorithms can scale to large problems
- RL with function approximation = computation with compressed representations
- Classic DP algorithms can be made to work but have high demand for the function approximator
- Misspecification error inflation is unavoidable with poly-time algorithms
- Algorithms must control extrapolation error unlike in supervised learning
- Interesting case: only the optimal value function is compressible

How big is your MDP?

- Horizon: 100-1000+ steps
- Backgammon 10^{20}
- Atari 2600 games: $2^{128} \approx 10^{38}$
- Game of Go 10¹⁷² board positions
- Dexterous arm: 60-dimensional, continuous state-space

Why/when does RL succeed?

Helpful/critical:

- Simulator
- Large compute

Planning

Large neural networks
 Generality
 ≈ function approximation /flexibility

But are these sufficient? When? Which algorithms will work?

Setting: Online planning (MPC)

 $A \in \mathcal{A}$

s: current state

Function approximation = compression! (this can help!)

Value functions

 $v^*, v^{\pi}: S \to \mathbb{R}$ $q^*, q^{\pi}: S \times \mathcal{A} \to \mathbb{R}$

• Policies

$$\pi {:}\, \mathcal{S} \to \mathcal{A}$$

Large scale RL ≡ Computation in compressed form

S = [0,1]# states = ∞ d = 6

$\begin{aligned} \boldsymbol{v}^{\pi}(s) &\approx \boldsymbol{\Sigma}_{i=1}^{d} \boldsymbol{\theta}_{i} \boldsymbol{\phi}_{i}(s) \\ \forall s \in \mathcal{S} \end{aligned}$

 $d = 6 \ll \#$ states = ∞

linear function approximation

Problem settings

Algorithm requirements

• Flexibility

Accept any feature map ϕ and MDP simulator

• Effectiveness

Policy induced should improve with MDP-feature-map "<u>fitness</u>"

• Efficiency

poly($H,A,d,1/\delta$) runtime, regardless of #states

Fitness between MDPs and features

State-action feature-map $\phi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$

Def: $f_{\theta}(s,a) \coloneqq \theta^{\top} \phi(s,a)$ $(s,a) \in S \times \mathcal{A}$

•
$$\varepsilon_{\text{saopt}}(M,\phi) = \inf_{\theta} \|q^* - f_{\theta}\|_{\infty}$$

- $\varepsilon_{\text{sapol}}(M,\phi) = \sup_{\pi} \inf_{\theta} \|q^{\pi} f_{\theta}\|_{\infty}$
- $\varepsilon_{\text{sabe}}(M,\phi) = \inf_{\theta} ||Tf_{\theta} f_{\theta}||_{\infty}$

Can do the same with state-features

MDPs

Featuremaps

Effectiveness

 $v^* - v^{\pi} = g(\epsilon(MDP, \phi)) + O(poly(H, A, d)/N^p)$

N: effort, p > 0

Examples for *g*:

$$g(\varepsilon) = 0.1 \varepsilon$$
$$g(\varepsilon) = H \varepsilon$$
$$g(\varepsilon) = \sqrt{d}H \varepsilon$$

Results for DP-style methods

- Policy iteration + function approximation
 - $\text{ All } q^{\pi} \in \mathcal{F}$
 - Rollout from core set found by solving G-optimal design, least-squares fit to return
 - Fully polytime
 - Approximation error inflation by $\sqrt{d}H$ (slower optimizer, conservative updates \approx NPG,PPO,..) or $\sqrt{d}H^2$ (least-squares policy iteration)
 - Lower inflation comes at exponential increase of compute cost (sphere packing)
- Value iteration + function approximation
 - $\operatorname{Img}(T) \subset \mathcal{F} \text{ (or } T\mathcal{F} \subset \mathcal{F})$
 - Tf approximated by least-squares + sampling, from core set found by solving G-optimal design
 - Fully polytime, same as above
 - Similar to DQN

Results for DP-style method

- Policy iteration + function approximation
 - $\text{ All } q^{\pi} \in \mathcal{F}$
 - Rollout from core set found by solving Gto return
 - Fully polytime
 - Approximation error inflation updates ≈NPG,PPO,...) or
 - Lower inflation comes packing)

ares policy iteration)

feast-squares fit

Increase of compute cost (sphere

20

Value iteration

 $\subset \mathcal{F}$)

d by least-squares + sampling, from core set found by (imal design

vtime, same as above

Si ar to DQN

Img

def policy_iteration(
$$P, r, \delta$$
): # getpolicy fn
 $\pi :=$ arbitrary, $k := 0, H := 1/(1 - \gamma)$
while $\gamma^k H > \delta$:
for all $s \in [S]$:
 $\pi'(s) := \operatorname{argmax}_a \overline{r(s, a) + \gamma(P(s, a), v^{\pi})}$
 $\pi := \pi', k := k + 1$
return π

$$v^{\pi} = r_{\pi} + \gamma P_{\pi} v^{\pi}$$
$$=: T_{\pi} v^{\pi}$$

Shorthand: $\pi' \coloneqq \Gamma v^{\pi}$

def policy_iteration(P, r, δ): # getpolicy fn

$$q \coloneqq 0, k \coloneqq 0, H \coloneqq 1/(1 - \gamma)$$

while $\gamma^k H > \delta$:

$$q' \coloneqq \text{eval}(\text{gpolicy}(q)) \# q^{\text{gpolicy}(q)}$$

 $q \coloneqq q', k \coloneqq k + 1$
return gpolicy(q)

def gpolicy(q)(s) := $\operatorname{argmax}_a q(s, a)$

def fitted_policy_it(simulator, δ): # getpolicy fn

- $\phi \coloneqq \text{simulator.getfeatures}(s, a) \forall s, a$
- $C \coloneqq \operatorname{coreset}(\phi) \# \text{G-optimal design}$

$$\theta \coloneqq 0, k \coloneqq 0, H \coloneqq 1/(1 - \gamma)$$

while $\gamma^k H + \dots > \delta$:

 $\theta' \coloneqq \text{eval}(\text{simulator}, C, \phi, \text{gpolicy}(\phi, \theta))$ $\theta \coloneqq \theta', k \coloneqq k + 1$

return policy(ϕ , θ)

def eval(simulator,
$$C, \phi, \pi$$
):
 $M \coloneqq ..., T \coloneqq ..., data:=[]$
for $(s_0, a_0) \in C$:
return := 0, $(s, a) \coloneqq (s_0, a_0)$
for m in $\{1, ..., M\}$:
for t in $\{0, ..., T\}$:
 $(s', r') := simulator.gen(s, a)$, return $+= \gamma^t r'$
 $s:=s', a:=\pi(s)$
return /= M
data.append(simulator.getfeature(s, a), return)

return leastsquaresfit(data)

Weighted least-squares extrapolation error control. Let $\mathcal{Z} \subset \mathbb{R}^d$.

Theorem

For any $\theta \in \mathbb{R}^d$, $\varepsilon: \mathbb{Z} \to \mathbb{R}$, $\rho \in \Delta_1(\mathbb{Z})$ such that $G_{\rho} \coloneqq \Sigma_{z \in \mathbb{Z}} \rho(z) z z^{\top}$ is nonsingular, for any $z \in \mathbb{Z}$: $|z^{\top} \hat{\theta} - z^{\top} \theta| \leq ||z||_{z=1} \max |\varepsilon(z)|$

$$\left| z^{\top} \hat{\theta} - z^{\top} \theta \right| \leq \left\| z \right\|_{G_{\rho}^{-1}} \max_{z' \in \mathcal{Z}} |\varepsilon(z)|$$

where

$$\widehat{\theta} = G_{\rho}^{-1} \Sigma_{z \in \mathcal{Z}} \rho(z) \left(z^{\mathsf{T}} \theta + \varepsilon(z) \right) z.$$

G-optimal design

Theorem (Jack Kiefer-Jacob Wolfowitz) Let $\mathcal{Z} \subset \mathbb{R}^d$ be an arbitrary finite set, spanning \mathbb{R}^d . There exists $\mathcal{C} \subset \mathcal{Z}$ finite, $\rho \in \Delta_1(\mathcal{Z})$ supported on \mathcal{C} such that

1.
$$|\mathcal{C}| \leq \frac{d(d+1)}{2}$$

- $2. \qquad \max_{z \in \mathcal{Z}} \|z\|_{G_{\rho}^{-1}} \le \sqrt{d}$
- 3. In fact $\inf_{\rho} \max_{z \in \mathbb{Z}} ||z||_{G_{\rho}^{-1}} = \sqrt{d}$.

Compressing optimal value functions

- Only q^* is realizable, there are many actions
 - $-2^{\Omega(d \wedge H)}$ lower bound: No query efficient algorithm exists
 - Sphere packing: Can squeeze k ≈ exp(τ²d) vectors on the ddimensional sphere such that any distinct two of them are τ- orthogonal. Needle in a haystack!
 - Build a tree with these being the actions. Rewards zero except at the end of the episode, where their SNR is "exponentially" poor.
- Only v^* is realizable, there are only a few actions
 - There is a query efficient algorithm with query cost $\tilde{O}((dH/\delta)^A)$
 - Algorithms: Optimistic parameter choice, rollouts to check for consistency (zero TD-error)
 - Poly compute time?

Compressing optimal value functions

- Only q^* is realizable, there are many action
 - $-2^{\Omega(d \wedge H)}$ lower bound: No query efficient a
 - Sphere packing: Can squeeze $k \approx \exp(\tau)$ on the *d*-dimensional sphere such that any τ -orthogonal. Needle in a hayst
 - Build a tree with these bein end of the episode, where a second se
- Only v* is real: are only a few actions
 There is the algorithm with query cost Õ((dH/δ)^A)
 Algorithm vith query cost õ((dH/δ)^A)</li

q^* lower bound

- 1. Maintain Bellman optimality equation
- 2. same a^* optimal @ every state, 2^d actions

 $q_h^*(s, a) = r_a(s) + q_{h+1}^*(s, a^*)$

- 3. Features from sphere packing
- 4. Deterministic transitions
- 5. Last stage: Bernoulli rewards, scale 2^{-H}
- 6. Scale features by 2^{-h} in stage h
- 7. 2^d actions necessary for hiding large reward gap at h = 1
- 8. Suboptimal actions a should give no info: $r_a(s) = 0$
- 9. Feature-bias to maintain consistency
- 10. Exit lane to maintain consistency

TensorPlan: Optimism + test/rollouts

 $v_h(s_0;\theta) \coloneqq \theta^{\mathsf{T}} \phi_h(s_0)$ θ^+

Given θ^+ , roll out with π_{θ^+} to check whether:

1. $v_1(s_0; \theta)$ is achieved by π_{θ^+} 2. (*) holds

 $\theta \mapsto \pi_{\theta}:$ $\pi_{\theta}(s) = a \text{ for the action } a \text{ such that}$ $(*) v_{h}(s; \theta) = r_{a}(s) + P_{a}(s)^{\top} v_{h+1}(\cdot; \theta)$ No max!!

Why will TensorPlan stop changing Θ ?

$$\theta \mapsto \pi_{\theta}:$$

$$\pi_{\theta}(s) = a \text{ for the action } a \text{ such that}$$

$$(*) v_{h}(s; \theta) = r_{a}(s) + P_{a}(s)^{\mathsf{T}} v_{h+1}(\cdot; \theta)$$

 π_{θ} is well-defined if $\forall s \exists a$ such that $\Delta(s, a, \theta) \coloneqq r_a(s) + P_a(s)^{\top} v_{h+1}(\cdot; \theta) - v_h(s; \theta) = 0$

 $\Leftrightarrow \Pi_{a} \Delta(s, a, \theta) = \mathbf{0}$

$$\Leftrightarrow \left\langle \bigotimes_{a} \overline{r_{a}(s) \left(P_{a}(s)^{\mathsf{T}} \phi_{h+1} - \phi_{h}(s) \right)}, \bigotimes_{a} \overline{\mathbf{1} \theta} \right\rangle = 0$$

 $\bigotimes_a \overline{1 \theta} \in \mathbb{R}^{(d+1)^A} \Rightarrow$ must stop after $(d+1)^A$ constraints

batch RL

 Minimax regret with policy induced data scales exponentially even in tabular MDPs

Problem setting

def getpolicy(s, S, A, D, δ, ξ):

MDP with S states, A actions $D = ((S_i, A_i, R_i, S'_i)_{i \in [n]})$

...

return
$$\pi$$
 # $v^{\pi}(s) \ge v^*(s) - \delta w. p. 1 - \xi$

Policy induced data

Data is obtained by following some "logging" policy π_{\log} for some episodes in the MDP.

$$A_i = \pi_{\log}(S_i)$$
<u>Theorem</u>

With policy induced data, for any logging policy, any constant-probability δ -sound algorithm needs at least

$$c A^{\min(S-1,H)} / \delta^2$$

observations on some MDP with S states, A actions and horizon H.

Problem oriented analysis

Choose
$$a_i = \underset{a}{\operatorname{argmin}} \pi_{\log}(a|i)$$

 $R \sim \mathcal{N}(\mu, 1), \mu \in \{\pm 2\delta\}$

 π_0 : choose a_i in state i

If $\mu = 2\delta$: $v^{\pi_0}(1) = 2\delta$, $v^{\pi}(1) = 0$ for any other (deterministic) π . If $\mu = -2\delta$: $v^{\pi_0}(1) = -2\delta$, $v^{\pi}(1) = 0$ for any other (deterministic) π .

If $H \rightarrow H + 1$ transition not seen $1/\delta^2$ times, can't choose between π_0 and others and keep the error small.

Open question

- What is a good way of evaluating and comparing batch RL algorithms beyond worst-case?
- Instance optimality to the rescue? Nope.
- Pessimistic algorithm
 - Studied in many fields under many names
 - Addresses winner's remorse
 - Weighted-minimax optimal
 - Samples need to provide coverage only where π^* goes

Summary

RL⊆CS

Algorithms! Instances!

Foundations by MDPs, planning Online learning Function approximation in planning Batch RL

Questions?

References

- <u>https://rltheory.github.io</u> (RL Theory Lecture notes, CMPUT 652 @UofA)
- Agarwal, Jiang, Kakade, Sun. Reinforcement Learning: Theory and Algorithms <u>https://rltheorybook.github.io/</u>
- RL Theory virtual seminar series: <u>https://sites.google.com/view/rltheoryseminars</u>

Basics

- Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994
- Chen, Y., & Wang, M. (2017). Lower bound on the computational complexity of discounted markov decision problems. arXiv preprint arXiv:1705.07312. [link]
- Singh, S. P., & Yee, R. C. (1994). An upper bound on the loss from approximate optimal-value functions. Machine Learning, 16(3), 227-233.
- Feinberg, E. A., Huang, J., & Scherrer, B. (2014). Modified policy iteration algorithms are not strongly polynomial for discounted dynamic programming. Operations Research Letters, 42(6-7), 429-431. [link]
- Scherrer, B. (2016). Improved and generalized upper bounds on the complexity of policy iteration. Mathematics of Operations Research, 41(3), 758-774. [link]
- Ye, Y. (2011). The simplex and policy-iteration methods are strongly polynomial for the Markov decision problem with a fixed discount rate. Mathematics of Operations Research, 36(4), 593-603. [link]
- Kearns, M., Mansour, Y., & Ng, A. Y. (2002). A sparse sampling algorithm for near-optimal planning in large Markov decision processes. Machine learning, 49(2), 193-208. [link]
- Remi Munos (2014). From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning. Foundations and Trends in Machine Learning: Vol. 7: No. 1, pp 1-129.

Online Learning

- Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. The Journal of Machine Learning Research, 11:1563–1600, 2010.
- Zihan Zhang and Xiangyang Ji. Regret minimization for reinforcement learning by evaluating the optimal bias function. arXiv preprint arXiv:1906.05110, 2019.
- Bourel, Hippolyte, Odalric Maillard, and Mohammad Sadegh Talebi. 2020. "Tightening Exploration in Upper Confidence Reinforcement Learning." Edited by Hal Daumé Iii and Aarti Singh, Proceedings of Machine Learning Research, 119: 1056–66.
- Fruit, Ronan, Matteo Pirotta, and Alessandro Lazaric. n.d. "Improved Analysis of UCRL2 with Empirical Bernstein Inequality." https://rlgammazero.github.io/docs/ucrl2b_improved.pdf.
- Lattimore, T., & Szepesvári, C. (2020). <u>Bandit algorithms.</u> Cambridge University Press.
- L.J. Savage, The theory of statistical decision, J. Amer. Statist. Assoc. 46 (1951) 55-67.
- Wald, Statistical Decision Functions, Wiley, New York, 1950.

Function approximation

- Simon S. Du, Sham M. Kakade, Ruosong Wang, and Lin F. Yang. 2020. "Is a Good Representation Sufficient for Sample Efficient Reinforcement Learning?" ICLR and <u>arXiv:1910.03016</u>.
- Tor Lattimore, Csaba Szepesvári, and Gellért Weisz. 2020. "Learning with Good Feature Representations in Bandits and in RL with a Generative Model." ICML and <u>arXiv:1911.07676</u>.
- Roshan Shariff and Csaba Szepesvári. 2020. "Efficient Planning in Large MDPs with Weak Linear Function Approximation". In NeurIPS 2020 and <u>arXiv:2007.06184</u>
- Gellért Weisz, Philip Amortila, Csaba Szepesvári. 2020. Exponential Lower Bounds for Planning in MDPs With Linearly-Realizable Optimal Action-Value Functions, To appear at ALT and also <u>arXiv:2010.01374</u>
- Gellért Weisz, Philip Amortila, Barnabás Janzer, Yasin Abbasi-Yadkori, Nan Jiang, Csaba Szepesvári. 2021. On Query-efficient Planning in MDPs under Linear Realizability of the Optimal State-value Function, <u>arXiv:2102.02049</u>
- Z. Wen and B. Van Roy. 2017. <u>"Efficient Reinforcement Learning in Deterministic</u> <u>Systems with Value Function Generalization"</u>, *Mathematics of Operations Research*, 42(3):762–782. [arXiv]
- Simon S Du, Yuping Luo, Ruosong Wang, and Hanrui Zhang. Provably efficient *Q*learning with function approximation via distribution shift error checking oracle. In Advances in Neural Information Processing Systems, pages 8060–8070, 2019b.

Function approximation/2

- Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Contextual decision processes with low Bellman rank are PAC-learnable. In International Conference on Machine Learning, pages 1704–1713. PMLR, 2017.
- Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement learning with linear function approximation. In Conference on Learning Theory, pages 2137–2143, 2020.
- Lin Yang and Mengdi Wang. Sample-optimal parametric *q*-learning using linearly additive features. In ICML, pages 6995–7004, 2019.
- Richard Bellman, Robert Kalaba and Bella Kotkin. 1963. Polynomial Approximation--A New Computational Technique in Dynamic Programming: Allocation Processes. Mathematics of Computation, 17 (82): 155-161
- Daniel, James W. 1976. "Splines and Efficiency in Dynamic Programming." *Journal of Mathematical Analysis and Applications* 54 (2): 402–7.
- Schweitzer, Paul J., and Abraham Seidmann. 1985. "Generalized Polynomial Approximations in Markovian Decision Processes." *Journal of Mathematical Analysis* and Applications 110 (2): 568–82.

Batch RL

- Xiao, Chenjun, Ilbin Lee, Bo Dai, Dale Schuurmans, and Csaba Szepesvari. 2021. "On the Sample Complexity of Batch Reinforcement Learning with Policy-Induced Data." *arXiv* [cs.LG]. arXiv. <u>http://arxiv.org/abs/2106.09973</u>
- Andrea Zanette. Exponential lower bounds for batch reinforcement learning: Batch RL can be exponentially harder than online RL. In ICML, 2021.
- Chenjun Xiao, Yifan Wu, Tor Lattimore, Bo Dai, Jincheng Mei, Lihong Li, Csaba Szepesvári, and Dale Schuurmans. On the optimality of batch policy optimization algorithms. In ICML, 2021.
- Philip Amortila, Nan Jiang, and Tengyang Xie. A variant of the Wang-Foster-Kakade lower bound for the discounted setting. arXiv preprint 2011.01075, 2020.
- Ruosong Wang, Dean P. Foster, and Sham M. Kakade. What are the statistical limits of offline RL with linear function approximation?, 2020.
- Jacob Buckman, Carles Gelada, and Marc G. Bellemare. The importance of pessimism in fixed-dataset policy optimization. In ICLR, 2021.
- Lin Chen, Bruno Scherrer, and Peter L. Bartlett. Infinite-horizon offline reinforcement learning with linear function approximation: Curse of dimensionality and algorithm. arXiv preprint 2103.09847, 2021.

Batch RL

- Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. In ICML, pages652–661, 2016.
- Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline RL? In ICML, 2021.
- Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch off-policy reinforcement learning without great exploration. In NeurIPS, 2020.
- Masatoshi Uehara, Masaaki Imaizumi, Nan Jiang, Nathan Kallus, Wen Sun, and Tengyang Xie. Finite sample analysisof minimax oine reinforcement learning: Completeness, fast rates and rst-order eciency.arXiv preprintarXiv:2102.02981, 2021.
- Ming Yin and Yu-Xiang Wang. Asymptotically efficient off-policy evaluation for tabular reinforcement learning. In AISTATS, pages 3948–3958, 2020.
- Ming Yin, Yu Bai, and Yu-Xiang Wang. Near-optimal provable uniform convergence in offline policy evaluation for reinforcement learning. In AISTATS, pages 1567–1575, 2021a.
- Ming Yin, Yu Bai, and Yu-Xiang Wang. Near-optimal offline reinforcement learning via double variance reduction. arXiv preprint arXiv:2102.01748, 2021b.

Why so complicated?

How about policy search?

 $\Pi = \{ f(\phi(s,a)) : f \in \mathcal{F} \}, \mathcal{F} \subset (\Delta_{\mathcal{A}})^{\mathbb{R}^d}$

E.g. Boltzmann/softmax policies: Π_B

 $\underset{\pi\in\Pi}{\operatorname{argmax}} J(\pi)$

Theorem (Vlassis-Littman-Barber '12):

Policy search is NP-hard with $J(\pi) = \mu^{\top} v^{\pi}$, discounting, μ uniform, state-aggregation

Proof: MAX-INDSET

What can be compressed?

Visual mountain car