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• Goal: Understanding of what RL algorithms can and cannot 
do.

• How? Theoretical insights
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BIG PICTURE 
RECAP



Getting the 
big picture 

right

RL⊆ML⊆CS

Goal: Algorithm design

What do we want from 
our algorithms?
• generality
• soundness or 

effectiveness
• efficiency

RL algos: 
past data → actions

Algo+problem instance 
→ (did it work? 
resource use?)

What makes an 
algorithm a good one? 

“Best on all
instances!?”



Hyperparameters?

Algorithm + hyperparameters ≠ algorithm!
“Algorithm family”

Questions studied
• Does the family have a “good member”?
• How to choose the hyperparameters? (To get an algorithm!)



Theoretical vs. empirical work
Empirical work (in RL/CS)

Use benchmarks to evaluate/compare/analyze algorithms
Modify algorithms to get better performance on benchmarks
Modify benchmarks to create new challenges

Theoretical work
Replace benchmarks with problem classes described by their 
properties
Advantage: Infinitely many instances! 
Brain vs. computation

Application work is separate from these. Instance is fixed!!



Empirical work
Unique limitations/problems
• Limited by compute power
• Limited scope
• Reproducibility, soft claims

Unique merits
• Accessibility
• Problem choice often more 

obvious

Theory work
Unique limitations/problems
• Limited by brainpower, 
• Lost in beauty
• Lost in detail

Unique merits
• Truths values are absolute 

and permanent
• Can prove impossibility
• Transparency, clarity

Common issues
• “overfitting” to the problem class/benchmark sets



Activities

• Problem oriented analysis
• Algorithm oriented analysis



Problem oriented analysis

Descriptive
Complexity: Characterize resource needs 

to solve instances in a problem class

Prescriptive
Given problem class and metrics, find an 
algorithm that is “best”/”good enough”



Algorithm oriented 
analysis

• Just descriptive, never prescriptive
• Starts with an algorithm 

! Does A work at all? 
• On which instances?

! Analyze resource needs



Why do theory?

• Are there any conditions when your shiny new, 
greatest and latest alg A provably works? 

• Does it work on tabular (simple) problems?

Theory as sanity check

• How well does alg A do relative to the 
competition?

Benchmarking with theory



Understanding theoretical works

What is the problem considered? 
(some “RL theory” papers are guilty of skipping this)

What is the result? 
(theorem!)

Conditions/hypothesis/antecedent

Conclusion/consequent

What is the context?
Why was the theorem produced?

Produced in this form?

Could it hold more generally?



foundations 
for RL



• General lessons: 
– At the heart of RL is search helped by 

structure
– With no or little structure, 

algorithms need to work hard
– MDPs give some structure, but more 

structure is needed for scaling up



Control problems

Code Environment

action

observations

Markov Decision Processes:
• Stochastic state transitions
• Control goal is to maximize total (discounted/undiscounted) reward
• State (and rewards) are available for measurement



Markov Decision Processes & Planning

𝑀 = 𝒮,𝒜, 𝑃, 𝑟, 𝛾
𝒮 = 1,2, … , 𝑆 ,𝒜 = {1,2, … , 𝐴}
𝑃 = 𝑃 𝑠, 𝑎 !,#, 𝑟 = 𝑟 𝑠, 𝑎 !,#

𝜋: 𝒮 → Δ(𝒜) (feedback) policies

𝑣$ 𝑠 = 𝔼!$[Σ%&'( 𝛾% 𝑟 𝑆%, 𝐴% ]

𝑣∗ 𝑠 = max
$

𝑣$ 𝑠

Objective: find 𝜋 s.t. 𝑣! ≈ 𝑣∗
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Example from ai.berkeley.edu

“Solve” MDP: find 𝑣 ≈ 𝑣∗

and use 𝜋 𝑠 = argmax# 𝑟 𝑠, 𝑎 + 𝛾⟨𝑃 𝑠, 𝑎 , 𝑣 ⟩

Why discounting?

http://ai.berkeley.edu/


Why care about
tabular MDP results?

1. Don’t build on sand (definitions, ..)

2. Clever abstractions may give finite MDPs

3. Results demonstrate fundamental, algorithm 
independent limitations



Problem settings

def getpolicy( P, r, 𝛿 ):

…
return 𝜋 # 𝜋 ∈ [𝐴][$], 𝑣! ≥ 𝑣∗ − 𝛿𝟏.

def getpolicy( simulator, 𝛿, 𝜉 ):
(S,A) := simulator.problemsize()
…

(s’,r’) := simulator.gen(s,a) # 𝑠 ∈ 𝑆 , 𝑎 ∈ 𝐴 , 𝑠& ∼ 𝑃 𝑠, 𝑎 , 𝑟& = 𝑟(𝑠, 𝑎)
…
return 𝜋 # 𝜋 ∈ [𝐴][$], 𝑣! ≥ 𝑣∗ − 𝛿𝟏 with probability of at least 1 − 𝜉.

offline planning
table-based input

offline planning
random access simulator



Problem settings

def getaction( simulator, s@, 𝛿, 𝜉 ):
(S,A) := simulator.problemsize()
...

(s’,r’) := simulator.gen(s,a) # 𝑠 ∈ 𝑆 , 𝑎 ∈ [𝐴]
…
return 𝑎 #  𝑎 ∈ 𝐴 s.t. for the policy 𝜋 induced, 𝑣! ≥ 𝑣∗ − 𝛿𝟏 w.p. ≥ ξ

def getaction( simulator, s@, 𝛿, 𝜉 ):
A := simulator.num_actions()
…

(s’,r’) := simulator.gen(s,a) # 𝑠: state previously seen, 𝑎 ∈ [𝐴]
…
return 𝑎 #  𝑎 ∈ 𝐴 s.t. for the policy 𝜋 induced, 𝑣! ≥ 𝑣∗ − 𝛿𝟏 w.p. ≥ ξ

online planning
local access simulator

online planning
random access simulator



Settings
Planning is 
• offline or online

MDP is specified with
• matrices (=tables)
• simulator with

– Random access to state-actions
– Local access to state-actions

Computation model:
• Turing (#bits matter)
• Real RAM model

2

3

2



def policy_iteration(𝑃, 𝑟, 𝛿): # getpolicy fn
𝜋 ≔arbitrary, 𝑘 ≔ 0,𝐻 ≔ 1/(1 − 𝛾)
while 𝛾!𝐻 > 𝛿:

for all 𝑠 ∈ [𝑆]:
𝜋" 𝑠 ≔ argmax# 𝑟 𝑠, 𝑎 + 𝛾⟨𝑃 𝑠, 𝑎 , 𝑣$ ⟩

𝜋 ≔ 𝜋′, 𝑘 ≔ 𝑘 + 1
return 𝜋

Shorthand: 𝜋" ≔ Γ𝑣$
𝑣! = 𝑟! + 𝛾𝑃!𝑣!

=: 𝑇!𝑣!



def value_iteration(𝑃, 𝑟, 𝛿): # getpolicy fn
𝑣 ≔ 0,	𝑘 ≔ 0,𝐻 ≔ 1/(1 − 𝛾)
while  𝛾!𝐻 > 𝛿:

for all 𝑠 ∈ [𝑆]:
𝑣" 𝑠 ≔ max# 𝑟 𝑠, 𝑎 + 𝛾⟨𝑃 𝑠, 𝑎 , 𝑣 ⟩

𝑣 ≔ 𝑣′
return Γ𝑣

Shorthand: 𝑣" ≔ 𝑇𝑣



Fundamental theorem 

Let 𝑣 = max
)

𝑣 𝑠

Theorem (contractions). The following hold:

1. ∀𝑢, 𝑣, 𝜋 ‖𝑇*𝑢 − 𝑇*𝑣 ≤ 𝛾 𝑢 − 𝑣 ‖
2. ∀𝑢, 𝑣 ‖𝑇𝑢 − 𝑇𝑣 ≤ 𝛾 𝑢 − 𝑣 ‖

Banach’s fixed point theorem.

For any contraction map 𝑇 over a ‖ ⋅ ‖-complete vector space,
𝑇+𝑢 → 𝑣∗, the unique fixed point of 𝑇.



Fundamental theorem 

Theorem

The following holds true in any finite MDP:
1. Any policy that is greedy with respect to 𝑣∗ is optimal
2. It holds that 𝑣∗ = 𝑇𝑣∗

Proof sketch: 
Step 1:   From 𝑣* ≤ 𝑣∗, 𝑣* = 𝑇*𝑣* ≤ 𝑇*𝑣∗⇒ 𝑣∗ ≤ 𝑇𝑣∗

Step 2: For 𝜋 = Γ𝑣∗, 𝑇*𝑣∗ = 𝑇𝑣∗ ≥ 𝑣∗
⇒ 𝑣∗ ≥ 𝑣* ← 𝑇*+𝑣∗ ≥ 𝑣∗
⇒ 𝑣∗ = 𝑣* = 𝑇*𝑣* = 𝑇*𝑣∗ = 𝑇𝑣∗

Qu.e.d



Global planning when MDP given with 
matrices

Policy iteration [Ye, 2011; Scherrer, 2016]

𝐻 ⋅ 𝑆𝐴 ∧ log(𝐻%/𝛿) ⋅ 𝑆𝐴 + 𝑆% + 𝑆%.'('
operations are sufficient to produce a 𝛿-
optimal policy

Value iteration [folklore]

𝐻 log 𝐻%/𝛿 𝑆%𝐴 operations are sufficient to 
produce a 𝛿-optimal policy

𝐻 =
1

1 − 𝛾

𝑎 ∧ 𝑏 ≔ min(𝑎, 𝑏)



Global planning when MDP given with 
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produce a 𝛿-optimal policy

𝐻 =
1

1 − 𝛾
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Tractability of 
planning in MDPs

MDP given with a table

Query complexity: Ω(𝑆!𝐴)

Any algorithm that can find 𝛿 = 1
suboptimal policies needs Ω(𝑆!𝐴) steps on 
some MDP [Chen & Wang’17]

P(s’|s,a)
(s,a)↓
𝒔* →

3 4 5 6

(1,1) 1 0 0 0

(1,2) 1 0 0 0

(1,3) 0 0 0 1

(2,1) 1 0 0 0

(2,2) 0 0 1 0

(2,3) 1 0 0 0

𝜋∗ 1 = 3, 𝜋∗ 2 = 2



heaven

hell

ground

r = 1

r = 0

A� 1 actions

action ⇡⇤(s)

r = 0

r = 0

S/3 states

S/3 states

S/3 states



Simulation optimization

• Global planning, MDP given with a random-access simulator

Query complexity:  :Θ(𝑆𝐴𝐻=/𝛿>) [Azar et al ‘13]

• Local planning, MDP given with a local-access simulator

Query complexity: Ω(𝐴?), 𝑂( 𝐻@𝐴/𝛿> ?) [Kearns et al., ’02]
No dependence on 𝑆, but exponential dependence on 𝐻.

𝐻 ≈
log 1/𝛿
1 − 𝛾

Statistical uncertainty



Simulation optimization

• Global planning, MDP given with a random-access simulator

Query complexity:  :Θ(𝑆𝐴𝐻=/𝛿>) [Azar et al ‘13]

• Local planning, MDP given with a local-access simulator

Query complexity: Ω(𝐴?), 𝑂( 𝐻@𝐴/𝛿> ?) [Kearns et al., ’02]
No dependence on 𝑆, but exponential dependence on 𝐻.

𝐻 ≈
log 1/𝛿
1 − 𝛾



What did we learn so far?

Value iteration and policy iteration have complementary 
strengths
Sampling can help reduce complexity

All algorithms suffer from one of the following “curses”:
• exponential in H complexity
• linear complexity in SA

Large problems: 𝑆𝐴 ∧ 𝐻 is large



online 
learning



• Not all exploration strategies are born equal

• General lessons: 
– Exploration is separate from optimization
– But everything is just optimization
– If adaptivity is the goal, optimism is the 

answer, while epsilon-greedy falls short
– why regret is more meaningful than 

reward for comparing algorithms



Problem settings

def getaction(s,r,S,A):

…
return 𝑎 #  𝑎 ∈ 𝐴

def bandit_getaction(r,A):

…
return 𝑎 #  𝑎 ∈ 𝐴

Bandit problem (S=1)

MDP with S states, A actions

getaction(..) MDP M

𝐴#

𝑆# , 𝑅#

getaction(..) Bandit

𝐴#

𝑅#



Performance metric

Total (expected) reward

𝑉" 𝒜,𝑀 ≔ 𝔼𝒜,%[Σ&'(" 𝑟(𝑆&, 𝐴&)]

Goal: Find a single algorithm 𝒜 that achieves as much 
reward as it is possible no matter the MDP 𝑀 that the 
algorithm interacts with. 
Say, M∈ ℳ is an MDP with 𝑆 states, 𝐴 actions, rewards in 
[0,1].

Perhaps this? 
V)∗ ≔ max

𝒜
min
%∈ℳ

𝑉"(𝐴,𝑀)

Does this make sense? Why or why not?



Performance metric: 
Second attempt
∀𝒜: min

!∈ℳ
𝑉$ 𝒜,𝑀 = 0 = 𝑉$∗

𝑟 ≡ 0 ⇒ 𝑉$ 𝒜,𝑀 = 0

Uninteresting 𝑀! 

Big idea (Savage, Wald, 1950-51): Metric 
should express how much an algorithm loses 
compared to the best specialized algorithm!

Regret:

𝑅$ 𝒜,𝑀 ≔ max
𝒜!

𝑉$ 𝒜', 𝑀 − 𝑉$(𝒜,𝑀)

Minimax regret: 𝑅$∗ = min
𝒜

max
!∈ℳ

𝑅$ 𝒜,𝑀

Algorithm design = multiobjective optimization



Mnih, Volodymyr, Koray
Kavukcuoglu, David Silver, Andrei 
A. Rusu, Joel Veness, Marc G. 
Bellemare, Alex Graves, et al. 
2015. “Human-Level Control 
through Deep Reinforcement 
Learning.” Nature 518 (7540): 
529–33.



Our troubles continue: Fix S ≥ 3, 𝐴 ≥ 2
∀𝒜 ∃𝑀 ∈ ℳJ,K s.t.

𝑇 1 − L
K
≤ 𝑅M 𝒜,𝑀 ≤ 𝑇 ∀𝒜

oops.. Why? Traps!

Commute time/diameter:
diam 𝑀 = max

),)+∈[J]
min
*
𝑑*,Q 𝑠, 𝑠R

Suggestion: Swap ℳJ,K with ℳS,J,K where

ℳS,J,K = { 𝑀 ∈ ℳJ,K: diam 𝑀 ≤ 𝐷}

𝑎∗

other actions

heaven

hell

𝑟 = +1

𝑟 = 0



Theorem (Jaksch, Ortner, Auer, 2010): For some 0 < 𝑐 ≤ 𝑐R,
for any 𝑇 ≥ 1,𝐷 ≥ 6 + 2logK𝑆, 𝑆 ≥ 3, 𝐴 ≥2,

𝑐 𝐷𝑆𝐴𝑇 ∧ 𝑇 ≤ 𝑅M∗ ℳS,J,K ≤ 𝑐′𝐷𝑆 𝐴𝑇 log(𝑆𝐴𝑇)

How to read this result?

What next?
Remove log?
Close 𝐷𝑆 gap?



Lower bound
S=8  A=2
𝛿 ≈ 1/𝐷





Optimism vs. forced exploration
Forced exploration
Systematically or randomly 
explore the actions for 
some portion of time

Optimism
Act as if the environment was 
the best among those that are 
plausible given the data so far

Adaptivity



Scaling up?

• Lower bound is clear: Without further 
assumptions, we hit a wall

• One possible avenue: Value function 
approximation

• We do it in planning first!



function 
approximation



• Function approximation is why RL algorithms 
can scale to large problems

• RL with function approximation = 
computation with compressed 
representations

• Classic DP algorithms can be made to work 
but have high demand for the function 
approximator

• Misspecification error inflation is 
unavoidable with poly-time algorithms

• Algorithms must control extrapolation error 
unlike in supervised learning

• Interesting case: only the optimal value 
function is compressible



How big is your MDP?

• Horizon: 100-1000+ steps

• Backgammon
10!-

• Atari 2600 games:
2(!. ≈ 10/.

• Game of Go
10¹⁷² board positions

• Dexterous arm:
60-dimensional, 
continuous state-space



Why/when	does	RL	succeed?

Helpful/critical:
• Simulator
• Large	compute	
• Large neural	networks

≈ function	approximation

But	are	these	sufficient?	When?
Which	algorithms	will	work?

Planning

Generality
/flexibility



Setting: Online planning (MPC)

MDP M

𝑠: current state

𝐴 ∈ 𝒜

MDP 
Simulator

𝑠, 𝑎 ∈ 𝒮×𝒜

𝑠# ∼ 𝑃$ 𝑠
𝑟 = 𝑟$ 𝑠

getaction(s)



Function	
approximation =	

compression!
(this	can	help!)

• Value	functions	
𝑣∗, 𝑣$: 𝒮 → ℝ
𝑞∗, 𝑞$: 𝒮×𝒜 → ℝ

• Policies
𝜋: 𝒮 → 𝒜

Image from: https://developer.apple.com/documentation/compression

https://developer.apple.com/documentation/compression


Large scale RL ≡
Computation in 
compressed form



𝒮 = [0,1]
# states	=	∞
𝑑 = 6

linear	function
approximation

𝑑 = 6 ≪ #states = ∞

𝑣!

https://patsy.readthedocs.io/en/latest/spline-regression.html

𝑣$ 𝑠 ≈ Σ*+,- 𝜃*𝜙*(𝑠)
∀𝑠 ∈ 𝒮

https://patsy.readthedocs.io/en/latest/spline-regression.html


Problem settings

def getaction( simulator, 𝛿, 𝜉 ):
(S,A) := simulator.problemsize()
...

(s’,r’) := simulator.gen(s,a) # 𝑠 ∈ 𝑆 , 𝑎 ∈ 𝐴
f := simulator.getfeature(s,a) # 𝑓 = 𝜙(𝑠, 𝑎)

…
return 𝑎 #  𝑎 ∈ 𝐴 s.t. for the policy 𝜋 induced, 𝑣! ≥ 𝑣∗ − 𝛿𝟏 w.p. 1−ξ

def getaction( simulator, s@, 𝑓@, 𝛿, 𝜉 ):
A := simulator.num_actions() # 𝑓< = 𝜙(𝑠<)
…

(s’,r’,f’) := simulator.gen(s,a) # 𝑠: state previously seen, 𝑎 ∈ [𝐴], 𝑓& = 𝜙(𝑠&)
…
return 𝑎 #  𝑎 ∈ 𝐴 s.t. for the policy 𝜋 induced, 𝑣! ≥ 𝑣∗ − 𝛿𝟏 w.p. 1−ξ

online planning
local access simulator

online planning
random access simulator



Algorithm requirements

• Flexibility

Accept any feature map 𝜙 and MDP simulator

• Effectiveness

Policy induced should improve 
with MDP-feature-map “fitness”

• Efficiency 

poly(𝐻,𝐴,𝑑,1/𝛿) runtime, regardless of #states



Fitness between MDPs and 
features

State-action feature-map 𝜙: 𝒮×𝒜 → ℝ,

Def:
𝑓- 𝑠, 𝑎 ≔ 𝜃.𝜙(𝑠, 𝑎) 𝑠, 𝑎 ∈ 𝒮×𝒜

• 𝜀/0123 𝑀,𝜙 = inf
-

𝑞∗ − 𝑓- (

• 𝜀/0214 𝑀,𝜙 = sup
$
inf
-

𝑞$ − 𝑓- (

• 𝜀/056 𝑀,𝜙 = inf
-

𝑇𝑓- − 𝑓- (

• …

Can do the same with state-features

MDPs Feature-
maps



Effectiveness

𝑣∗ − 𝑣* = g ε MDP, 𝜙 + O(poly(H, A, d)/𝑁U)

𝑁: effort, 𝑝 > 0

Examples for 𝑔:

𝑔 𝜀 = 0.1 𝜀
𝑔 𝜀 = 𝐻 𝜀
𝑔 𝜀 = 𝑑𝐻 𝜀



Results for DP-style methods
• Policy iteration + function approximation

– All 𝑞$ ∈ ℱ
– Rollout from core set found by solving G-optimal design, least-squares fit 

to return
– Fully polytime
– Approximation error inflation by 𝑑𝐻 (slower optimizer, conservative 

updates ≈NPG,PPO,..) or 𝑑𝐻7 (least-squares policy iteration)
– Lower inflation comes at exponential increase of compute cost (sphere 

packing)

• Value iteration + function approximation
– Img 𝑇 ⊂ ℱ (or 𝑇ℱ ⊂ ℱ)
– 𝑇𝑓 approximated by least-squares + sampling, from core set found by 

solving G-optimal design
– Fully polytime, same as above
– Similar to DQN
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• Policy iteration + function approximation

– All 𝑞$ ∈ ℱ
– Rollout from core set found by solving G-optimal design, least-squares fit 

to return
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def policy_iteration(𝑃, 𝑟, 𝛿): # getpolicy fn
𝜋 ≔arbitrary, 𝑘 ≔ 0,𝐻 ≔ 1/(1 − 𝛾)
while 𝛾!𝐻 > 𝛿:

for all 𝑠 ∈ [𝑆]:

𝜋" 𝑠 ≔ argmax# 𝑟 𝑠, 𝑎 + 𝛾⟨𝑃 𝑠, 𝑎 , 𝑣$ ⟩
.^(0,#)

𝜋 ≔ 𝜋′, 𝑘 ≔ 𝑘 + 1
return 𝜋

Shorthand: 𝜋" ≔ Γ𝑣$
𝑣! = 𝑟! + 𝛾𝑃!𝑣!

=: 𝑇!𝑣!



def policy_iteration(𝑃, 𝑟, 𝛿): # getpolicy fn
𝑞 ≔ 0 , 𝑘 ≔ 0,𝐻 ≔ 1/(1 − 𝛾)
while 𝛾!𝐻 > 𝛿:

𝑞′ ≔ eval( gpolicy(q) ) # 𝑞3456789(.)

𝑞 ≔ 𝑞′, 𝑘 ≔ 𝑘 + 1
return gpolicy(q)

def gpolicy(q) 𝑠 ≔ argmax# 𝑞(𝑠, 𝑎)



def fitted_policy_it(simulator, 𝛿): # getpolicy fn
𝜙 ≔ simulator. getfeatures 𝑠, 𝑎 ∀𝑠, 𝑎
𝐶 ≔ coreset 𝜙 #	G-optimal	design
𝜃 ≔ 0,	𝑘 ≔ 0,𝐻 ≔ 1/(1 − 𝛾)
while 𝛾!𝐻 +⋯ > 𝛿:

𝜃′ ≔ eval(simulator, 𝐶, 𝜙, gpolicy(𝜙, 𝜃))
𝜃 ≔ 𝜃′, 𝑘 ≔ 𝑘 + 1

return policy(𝜙, 𝜃)



def eval(simulator, 𝐶, 𝜙, 𝜋):
𝑀 ≔ … ,𝑇 ≔ … , data:=[]
for 𝑠!, 𝑎! ∈ 𝐶:

return := 0, 𝑠, 𝑎 ≔ (𝑠!, 𝑎!)
for 𝑚 in 1,… ,𝑀 :

for 𝑡 in 0,… , 𝑇 :
(s’,r’) := simulator.gen(s,a), return += 𝛾"𝑟′
s:=s’, a≔𝜋(s)

return /= M
data.append( simulator.getfeature(s,a), return )

return leastsquaresfit(data)



Weighted least-squares extrapolation error 
control. Let 𝒵 ⊂ ℝ-.

Theorem
For any 𝜃 ∈ ℝ- , 𝜀: 𝒵 → ℝ, 𝜌 ∈ Δ, 𝒵 such that

𝐺: ≔ Σ;∈𝒵𝜌 𝑧 𝑧 𝑧>

is nonsingular, for any 𝑧 ∈ 𝒵:

𝑧> y𝜃 − 𝑧> 𝜃 ≤ 𝑧 ?_`a max;b∈𝒵
|𝜀 𝑧 |

where
y𝜃 = 𝐺:@,Σ;∈𝒵 𝜌 𝑧 𝑧>𝜃 + 𝜀 𝑧 𝑧.





Compressing optimal value functions
• Only 𝑞∗ is realizable, there are many actions

– 2=(>∧@) lower bound: No query efficient algorithm exists
– Sphere packing: Can squeeze 𝑘 ≈ exp(𝜏A𝑑) vectors on the 𝑑-

dimensional sphere such that any distinct two of them are 
𝜏- orthogonal. Needle in a haystack! 

– Build a tree with these being the actions. Rewards zero except at the 
end of the episode, where their SNR is “exponentially” poor.

• Only 𝑣∗ is realizable, there are only a few actions
– There is a query efficient algorithm with query cost O𝑂( 𝑑𝐻/𝛿 B )
– Algorithms: Optimistic parameter choice, rollouts to check for 

consistency (zero TD-error)
– Poly compute time?
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𝑞∗ lower bound
1. Maintain Bellman optimality equation
2. same 𝑎∗ optimal @ every state, 2> actions

𝑞C∗ 𝑠, 𝑎 = 𝑟D 𝑠 + 𝑞CEF∗ 𝑠, 𝑎∗

3. Features from sphere packing
4. Deterministic transitions
5. Last stage: Bernoulli rewards, scale 2G@

6. Scale features by 2GC in stage ℎ
7. 2> actions necessary for hiding large reward 

gap at ℎ = 1
8. Suboptimal actions 𝑎 should give no info: 

𝑟D 𝑠 = 0
9. Feature-bias to maintain consistency
10. Exit lane to maintain consistency



TensorPlan: Optimism + test/rollouts

Θ ⊂ ℝW
𝜃X

𝜃 ↦ 𝜋Y: 
𝜋Y 𝑠 = 𝑎 for the action 𝑎 such that
(*) 𝑣Z 𝑠; 𝜃 = 𝑟[ 𝑠 + 𝑃[ 𝑠 \𝑣ZX](⋅; 𝜃)

No max!!

Given 𝜃X, roll out with 𝜋Y' to   
check whether:

1. 𝑣] 𝑠^; 𝜃 is achieved by 𝜋Y'
2.  (*) holds 

𝑣0 𝑠-; 𝜃 ≔ 𝜃1𝜙0(𝑠-)



Why will TensorPlan stop changing Θ?
𝜃 ↦ 𝜋Y: 
𝜋Y 𝑠 = 𝑎 for the action 𝑎 such that
(*) 𝑣Z 𝑠; 𝜃 = 𝑟[ 𝑠 + 𝑃[ 𝑠 \𝑣ZX](⋅; 𝜃)

𝜋Y is well-defined if ∀𝑠 ∃ 𝑎 such that
Δ 𝑠, 𝑎, 𝜃 ≔ 𝑟[ 𝑠 + 𝑃[ 𝑠 \𝑣ZX] ⋅; 𝜃 − 𝑣Z 𝑠; 𝜃 =0

⇔ Π[Δ 𝑠, 𝑎, 𝜃 = 0

⇔ ⊗[ 𝑟[ 𝑠 𝑃[ 𝑠 \𝜙ZX] − 𝜙Z 𝑠 ,⊗[ 1 𝜃 = 0

⊗$ 1 𝜃 ∈ ℝ %&' ( ⇒ must stop after 𝑑 + 1 ( constraints



batch  RL



• Minimax regret with policy 
induced data scales 
exponentially even in tabular 
MDPs



Problem setting

def getpolicy(𝑠, 𝑆, 𝐴, 𝐷, 𝛿, 𝜉):

…
return 𝜋 #  𝑣$ 𝑠 ≥ 𝑣∗ 𝑠 − 𝛿 𝑤. 𝑝. 1 − 𝜉Bandit problem (S=1)

MDP with S states, A actions
𝐷 = ( 𝑆) , 𝐴) , 𝑅) , 𝑆)* )∈ , )

Policy induced data
Data is obtained by following some “logging” policy 𝜋-./ for some episodes in the MDP.

𝐴) = 𝜋-./(𝑆))



Theorem

With policy induced data, for any logging policy, any constant-
probability 𝛿-sound algorithm needs at least

𝑐 𝐴\]^ J_L,? / 𝛿>

observations on some MDP with 𝑆 states, 𝐴 actions and horizon 
𝐻.



Choose 𝑎) = argmin
$
𝜋-./(𝑎|𝑖)

𝑅 ∼ 𝒩 𝜇, 1 , 𝜇 ∈ {±2𝛿}

𝜋0: choose 𝑎) in state 𝑖

If 𝜇 = 2𝛿: 𝑣!) 1 = 2𝛿, 𝑣! 1 = 0 for any other (deterministic) 𝜋.
If 𝜇 = −2𝛿: 𝑣!) 1 = −2𝛿, 𝑣! 1 = 0 for any other (deterministic) 𝜋.

If 𝐻 → 𝐻 + 1 transition not seen 1/𝛿1 times, can’t choose between 𝜋0 and others
and keep the error small.



Open question

• What is a good way of evaluating and comparing batch RL 
algorithms beyond worst-case?

• Instance optimality to the rescue? Nope.
• Pessimistic algorithm

– Studied in many fields under many names
– Addresses winner’s remorse
– Weighted-minimax optimal
– Samples need to provide coverage only where 𝜋∗ goes



Summary

RL⊆CS
Algorithms! Instances!

Foundations by MDPs, planning
Online learning
Function approximation in planning
Batch RL

Questions? 
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Why so complicated?

How	about	policy	search?
Π = { 𝑓 𝜙 𝑠, 𝑎 ∶ 𝑓 ∈ ℱ}, ℱ ⊂ Δ𝒜 ℝ8

E.g. Boltzmann/softmax policies: Π%

argmax
&∈(

𝐽(𝜋)

Theorem (Vlassis-Littman-Barber ‘12):
Policy search is NP-hard with 𝐽 𝜋 = 𝜇)𝑣&, discounting, 𝜇
uniform, state-aggregation

Proof: MAX-INDSET



What can be compressed?

Visual mountain car


