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Architecture of Neural Network

● Neural network architecture is important for both accuracy and efficiency

Can we automatically design architecture? 



Outline

● Background (history, benchmarks)
● Significant progresses in the past 3 years: 

○ Differentiable Neural Architecture Search
○ Predictor-based NAS with Graph Neural Networks

● Open problems



History of Neural Architecture Search (NAS)

- Early years: only on toy or small-scaled problems
- Evolutionary algorithms (Miller et al., 89; Schaffer et al., 92; Verbancsics & Harguess, 13)
- Bayesian optimization (Snoek et al, 12; Domhan et al., 15)

Population
(set of configs)

Performance 
evaluation

Evolutionary: recombination & mutation
Bayesian: resampling



An early example

From (Miller et al., 1989), NAS for the four-quadrant problem. 



Breakthrough in 2016

● In 2016, Reinforcement learning (RL) is proposed for NAS
○ A better (structured) representation of search space
○ Learning a controller to generate architectures

● Successful results, but need hundreds of GPU days

[Zoph and Quoc] Neural Architecture Search with Reinforcement Learning. ICLR, 2017. 
[Baker, Gupta, Naik, Raskar] Designing Neural Network Architectures using Reinforcement Learning. 
ICLR, 2017. 



NAS with Reinforcement Learning

(Figure from Quoc Le)



Training RNN controller by RL

(Figure from Quoc Le)

Extremely slow (>20,000 GPU days)



Cell-based Search Space (NASNet)

● Direct search on the global space:
○ Expensive; can’t transfer to other datasets

● Cell-based search space: 
○ Repeated cells (like ResNet)
○ Can use less blocks in searching 
○ Can generalize to more complex datasets 

by stacking more blocks
● Compared with (Zoph & Le, 2017):

○ Error: 3.65 -> 2.65
○ Search cost: 22,400 -> 2000 GPU days

[Zoph, Vasudevan, Shlens, Le] Learning Transferable 
Architectures for Scalable Image Recognition. In CVPR, 2018. 



Generalize from CIFAR-10 to ImageNet



Evolutionary Algorithm

Evolutionary algorithm also becomes possible with this search space

(Figure from Wituba et al., 2019)

[Real, Aggarwak, Huang, Le] Regularized Evolution for Image Classifier Architecture Search. AAAI, 2019. 



Other RL or evolutionary algorithms proposed before 2018

(Figure from Nikhil Naik)

Search typically takes hundreds of GPU days! Impractical for typical users. 



Running NAS is Hard

● Experiments for NAS are typically time consuming to run

● RL or evolutionary algorithm often need to evaluate >10,000 configs in a 
single run

Search Algorithm Performance evaluation 
(e.g., 100-epoch training)

    #runs for 
    hyperparameter tuningx

x Multiple runs to compute mean



NAS Evaluation is Hard

● Best vs Average Performance
● Different training recipes (#epochs, 

augmentation, hyperparameters)
● Different search space 

[Yang, Esperanca, Carlucci] NAS Evaluation is Frustratingly Hard. 
In ICLR, 2020. 



Benchmarks

● NAS-Bench 101 (Ying et al., ICML 2019)
○ 423K architectures evaluated
○ Only architectures with at most 9 edges (not suitable for 1-shot methods)

● NAS-Bench-1Shot1 (Zela et al., 2020), NAS-Bench-201(Dong&Yang, 2020)  
○ Precomputed the performance for all the architectures in the space 

=> easy for running experiments
○ NAS-Bench-201 Includes CIFAR-10, CIFAR-100, ImageNet 16-120



Main algorithmic Progresses after 2018

● Differentiable Neural Architecture Search 

● Predictor-based NAS with Graph Neural Network



Differentiable Neural 
Architecture Search



Significantly reduced search time since 2018

Can run on a 
single GPU 
machine!



Concept of Weight Sharing

● Models defined by Path A and Path B should be trained separately
● Can we assume Path A and Path B share the same weight at 1->2?

○ Weight Sharing!
○ Avoid retraining for each new architecture



Concept of Weight Sharing

● Supernet: ensemble of many architectures
● All the architectures share the same w (weight sharing)
● Weight sharing can be directly used to speed up Performance Evaluation in 

other NAS methods
○ Train a “supernet” containing all the operations and weights
○ For any architecture, directly take the shared weights and evaluate on 

validation set
○ ENAS: weight sharing + RL 

■ 0.5 GPU days with 2.9 error on CIFAR-10

[Pham, Guan, Zoph, Le, Dean] Efficient Neural Architecture Search via Parameter Sharing. ICML, 2018.  

Population
(set of configs)

Performance 
Evaluation

Supernet



Can we directly obtain the final architecture through 
supernet training? 

Each edge is chosen from a pool of operations:

Conv3x3, Conv5x5, Conv7x7, skip_connect, 
max_pool, avg_pool, zero, noise, ...

One operation per edge => a discrete problem



Continuous Relaxation

● For simplicity, assume 3 operations
● Assume each edge is a mixed of three operations: 

v1

v0

Weight of each operation

[Liu, Simonyan, Yang] DARTS: Differentiable Architecture Search. In ICLR 2019. 



Continuous Relaxation

● For simplicity, assume 3 operations
● Assume each edge is a mixed of three operations: 

● Can use softmax to ensure the weights form a prob. distribution
v1

v0

Weight of each operation

[Liu, Simonyan, Yang] DARTS: Differentiable Architecture Search. In ICLR 2019. 



Continuous Relaxation

● Final architecture:                       is a one-hot vector

● Relax to continuous values in the search phase
=> Bi-level optimization for finding 

v1

v0

v1

v0



Differentiable Neural Architecture Search (DARTS)

● Solve the bi-level optimization problem to obtain                (supernet)
● Use magnitude of       to choose the final architecture

(figure from Zela et al., 2020)



How to solve bi-level optimization?

● Iteratively update       and  
● Update      :

○ Time consuming to compute w* exactly => approximate by one SGD step

● Update       :
○ First order DARTS: assume w is constant w.r.t.        



How to solve bi-level optimization?

● Second order DARTS: 𝙬’ is dependent on 𝞪, so



How to solve bi-level optimization?

● Second order DARTS: 𝙬’ is dependent on 𝞪, so

● Hessian-vector product can be computed with similar complexity as backprop:
○ Finite difference estimation:

○ Compute with auto-differentiation



Complexity of DARTS

● Time complexity (both first and second order): 
training the supernet only once 
○ Supernet is a network with K operations with each edge 

=> only K times slower than standard training
○ Usually good enough

● Memory complexity (GPU memory):
○ Backprop on all the operations on each edge

=> K times memory consumption
○ Prohibits for many problems



Structured search space

● Using the cell-based search space as 
NASNet 

● Further reduced search cost: 
○ Searching on fewer of cells
○ Searching on fewer channels
○ 8 cells/16 channels for search 

⇒ 20 cells/36 channels during evaluation



Performance on CIFAR-10



Transfer to ImageNet (mobile setting)



Architectures found by DARTS

Normal cells on CIFAR-10 Reduction cells on CIFAR-10



However, DARTS fails in many simple cases

● Space 1: 2 operations per edge (selected from the original DARTS supernet)
● Space 2: 2 operations per edge {Conv3x3, skip_connect}
● Space 3: 3 operations per edge {Conv3x3, skip_connect, Zero}
● Space 4: 2 operations per edge {Conv3x3, Gaussian_noise}

Validation error of supernet Test error of final architecture

[Zela, Elsken, Saikia, Marrakchi, Brox, Hutter] Understanding and Robustifying Differentiable Architecture Search. In ICLR, 2020. 



DARTS leads to degenerated solutions in S1-S4

 

S1 S2

S3 S4



Reason 1: Sharpness of the solution
● A good continuous solution doesn’t imply a good discrete solution 
● Gap between continuous and discrete solutions can be estimated by sharpness

○ Assume       is the continuous solution and     is the discrete solution
○ Based on Taylor expansion:

where                                is the Hessian w.r.t. 
○ Standard DARTS lead to “Sharp solutions” (large Hessian)

(figure from Zela et al., 2020)



Reason 1: Sharpness of the solution

DARTS training leads to sharp local minimums

Validation error of supernet Test error of final architecture Dominant eigenvalue of Hessian

[Zela, Elsken, Saikia, Marrakchi, Brox, Hutter] Understanding and Robustifying Differentiable Architecture Search. In ICLR, 2020. 



Reason 2: Skip connection domination

● Supernet accuracy ↑ 
● Weight for skip connection ↑ 
● Weight for convolution ↓

[Wang, Cheng, Chen, Tang, Hsieh] Rethinking Architecture Selection in Differentiable NAS. In ICLR, 2021. 



Reason 2: Skip connection domination

● Supernet accuracy ↑ 
● Weight for skip connection ↑ 
● Weight for convolution ↓

● Formally, we proved that for the optimal supernet, as number of layers goes 
to infinity,           ↑ 1 and             ↓ 0 

[Wang, Cheng, Chen, Tang, Hsieh] Rethinking Architecture Selection in Differentiable NAS. In ICLR, 2021. 



Improvements over DARTS



Improvements over DARTS

● Supernet Training
○ Usually aim to make supernet more “discreterizable”
○ Balance exploration and exploitation

● Scalability
○ How to use more blocks in searching?
○ Reduce memory overhead to directly search on larger problems

● Architecture Selection
○ Does architecture weights (𝞪) really indicate their importance? 



Improved Supernet Training for 
DARTS



Supernet training: Distribution Learning

● Rethink DARTS as a distribution learning problem
○ For each edge,                      defines a distribution over operations 
○ We eventually “sample” an architecture from this distribution
○ How to learn                     based on gradient-based optimization? 

● Benefits: 
○ Performance will be preserved better after discretization
○ Reduced training time in some cases

Distribution of 
Sample 

(continuous or discrete) Gradient computation

Update



Gumbel Softmax

● Sampling from a distribution                          (can’t backprop from i to 𝞪) 

[Xie, Zheng, Liu, Lin] SNAS: Stochastic Neural Architecture Search. In ICLR, 2019. 



Gumbel Softmax

● Sampling from a distribution                          (can’t backprop from i to 𝞪) 
● Gumbel-max: this is equivalent to 

where each

[Xie, Zheng, Liu, Lin] SNAS: Stochastic Neural Architecture Search. In ICLR, 2019. 



Gumbel Softmax

● Sampling from a distribution                          (can’t backprop from i to 𝞪) 
● Gumbel-max: this is equivalent to 

where each
○ Gumbel-softmax: using softmax with temperature annealed to be close to zero 

○ This enables back-propagation to                    (reparameterization trick)
○ SNAS: use Gumbel softmax with annealed temperature in DARTS

[Xie, Zheng, Liu, Lin] SNAS: Stochastic Neural Architecture Search. In ICLR, 2019. 



Gumbel Softmax with Discrete Samples

● zi sampled by Gumbel softmax could be close to one-hot (when temperature 
is very slow), but not discrete

● Needs to forward-backward all the operations => same cost as DARTS
● GDAS: Straight-through trick to sample discrete variables:

○ Take 
○ Let                           and stop gradient for const 

(use discrete variable in forward pass and continuous 
zi in the backward pass)

[Dong and Yang] Searching a Robust Neural Architecture in Four GPU Hours. 
In CVPR, 2019. 



Performance of SNAS and GDAS



DrNAS: Dirichlet Neural Architecture Search

● Assume architecture parameters                        are sampled from Dirichlet 
Distribution: 

● Dirichlet distribution samples from the standard K-1 simplex
○ 𝞫 ≪1 leads to sparse samples 

with high variance 
○ 𝞫 ≫1 leads to dense samples 

with low variance (for sufficient 
exploration)
 



DrNAS: Dirichlet Neural Architecture Search

● DrNAS objective: 
○ Point estimation → distribution learning

○ Gradient computation: 

○ Architecture selection: magnitude of 𝞫

[Chen*, Wang*, Cheng*, Tang, Hsieh] DrNAS: Dirichlet Neural Architecture Search. In ICLR, 2020. 



Regularization effect of distribution learning

● We show that minimizing the expected Lval controls the trace norm of 
Hessian: 

with



Performance of DrNAS

[Chen*, Wang*, Cheng*, Tang, Hsieh] DrNAS: Dirichlet Neural Architecture Search. In ICLR, 2020. 

(progressive learning will be introduced later)



Performance of DrNAS

● On NAS-Bench-201
○ Achieve oracle when searching on CIFAR-100

DrNAS (73.51) vs SNAS (69.34) vs DARTS (38.97)



Supernet training: Projection/proximal operation

● NASP: Adding constraints to enforce sparsity of operation weights:

● At each step:
○ Update                                      
○ Project        to the discrete constraint set (roughly, select the most important operation)
○ NASP also has other regularization terms to promote sparsity

For each edge: 

[Yao, Xu, Tu, Zhu] NASP: Efficient Neural Architecture Search via Proximal Iterations. In AAAI, 2020. 



Supernet training: perturbation-based regularization

● A smoother landscape will make supernet robust to discreterization



Supernet training: perturbation-based regularization

● Make supernet robust to 𝞪 perturbation
○ Since we need to perturb it to a discrete architecture in the final stage 

● Mathematically, we hope the supernet robust to random or adversarial 
(worst-case) perturbation of 𝞪   

[Chen and Hsieh] Stabilizing Differentiable Architecture Search via Perturbation-based Regularization. In ICML, 2020.  



Supernet training: perturbation-based regularization

● Make supernet robust to 𝞪 perturbation
○ Since we need to perturb it to a discrete architecture in the final stage 

● Mathematically, we hope the supernet robust to random or adversarial 
(worst-case) perturbation of 𝞪   

● Smooth DARTS (SDARTS):
SDARTS: Each step
➔ Perturb 𝞪       

◆ Random:
◆ Adversarial:  

➔ Update w based on 𝞪’
➔ Update 𝞪  based on w

[Chen and Hsieh] Stabilizing Differentiable Architecture Search via Perturbation-based Regularization. In ICML, 2020.  

SDARTS-RS:

SDARTS-Adv:



SmoothDARTS

● On NAS-Bench-1Shot1
○ Continues to discover better architectures
○ Anneal Hessian to a low level



SmoothDARTS

● Can be combined with other search methods:

[Chen and Hsieh] Stabilizing Differentiable Architecture Search via Perturbation-based Regularization. In ICML, 2020.  



Improved Scalability for DARTS



Scalability

● Supernet training cost: Assume each edge has K operations
○ Roughly K times slower than standard training
○ Roughly K times memory cost

● A standard DARTS pipeline: 
○ Searching on a proxy task that with fewer layers/channels or smaller dataset
○ DARTS paper: 

8 cells/16 channels for search ⇒ 20 cells/36 channels during evaluation
CIFAR-10 ⇒ ImageNet

● How to directly search on the target problem
without a proxy task?

8 
cells 20 cells

Search Net Eval. Net



ProxylessNAS (operation-level reduction)

● Only sample one path in each update and masking all other operations
● Compute the gradient for the operations in this path
● All the operations will be adjusted accordingly due to the normalization effect

○ Selected operation weight ↑ => all other operation weights ↓

[Cai, Zhu, Han] ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware. In ICLR, 2019.  



Channel-level Reduction

● PC-DARTS (Xu et al., 2019): Instead of dropping operations, randomly 
dropping channels in search time
○ Will not affect the performance too much
○ Sometimes can even improve generalization

● Progressive learning (Chen et al., 2020): 
○ Progressively prune the channels while reducing the channel dropout rate



Performance summarization



Architecture Selection



Architecture Selection in Differentiable NAS



Architecture selection

● Recall the skip-domination problem: 
○ For the optimal supernet with infinite number of layers:
○ 𝞪 values may not really represent the “importance” of each operation

● Skip connection stands out if we select the best operation based on 𝞪
● Does                   mean skip connection is better than convolution? 

[Wang, Cheng, Chen, Tang, Hsieh] Rethinking Architecture Selection in Differentiable NAS. ICLR, 2020 
(outstanding paper award)



Does 𝞪 represent operation strength? 

● Probably Not!
● S2: (Skip_connect, sep_conv_3x3)

○ Skip connections dominate according to 𝞪
○ But the accuracy of S2 supernet benefits from more convolutions

Magnitude-base selection Progressive tuning selection 



Does 𝞪 represent operation strength? 

● Same observations on large space: DARTS space
○ Magnitude of 𝞪 deviates from accuracy of the supernet
○ Some operations with small 𝞪 are in fact more important for supernet



● Evaluate the importance of an operation o by: 
Compute the drop of validation accuracy when o is removed 
(no need for further training)

● Use this to choose the best o for an edge
● Fine-tune the solution, and move to the next edge
● “Perturbation-based Selection” (PT for short)

A New Architecture Selection Method

[Wang, Cheng, Chen, Tang, Hsieh] Rethinking Architecture Selection in Differentiable NAS. ICLR, 2020 
(outstanding paper award)



Results in Cases Where DARTS Fails

● PT consistently improves over the original magnitude-based selection



Results in Cases Where DARTS Fails

● Performance improves with more searching epochs



Performance on DARTS space



Possibility of removing 𝞪



Challenges in Differentiable NAS

● Is the “weight sharing” assumption valid? 

Weight sharing leads to significant different architecture ranking (Yu et al., 2020)



Partial weight sharing? 

● (Zhao et al., 2021): Few-shot NAS
○ “Split” architectures based on the operations on an edge
○ Weight sharing only within each group

● Better ways to identify when to share 
weights?

● How to incorporate this idea in other
NAS algorithms?

[Zhao, Wang, Tian, Fonseca, Guo] Few-shot Neural Architecture Search. ICML 2021. 



Predictor-based NAS with Graph 
Neural Network



●
● However,                  is expensive to evaluate

○ Need to train an architecture fully
● Solution - Surrogate Predictor:

○ Learn a cheap surrogate model of 
○ Use         to evaluate architectures

Vanilla NAS



Surrogate model (Predictor)

●        is typically a regression model
● Train       using a small set of architectures (hundreds)
● Use       to evaluate other architectures and identify the 

best one

[Wen, Liu, Li, Chen, Bender, Kindermans] Neural Predictor for Neural Architecture Search. In ECCV, 2020.

Predictor

Accuracy = 0.94



Iterative data selection

● Previously: generate training set at once, and use it to train predictor
● We can iteratively pick training data for the predictor:

○ Training predictor using the current training pool of architectures
○ Use the trained predictor to propose new architectures
○ Augment the current training pool with these new architectures

● Iterative data selection improves the predictor performance for top models

Current pool of 
architectures Predictor

training

add new architectures to training pool



Iterative data selection

● Iterative data selection improves the predictor accuracy for top models

[Dudziak, Chau, Lee, Kim, Lane] Prediction-based NAS using GCNs. In NeurIPS, 2020.



Iterative data selection

● Iterative data selection improves the predictor accuracy for top models

[Dudziak, Chau, Lee, Kim, Lane] Prediction-based NAS using GCNs. In NeurIPS, 2020.

Training predictor iterativelyTrain Predictor At Once



Pipeline for predictor-based NAS

● Most of SOTA predictor-based 
methods follow this pipeline

● They mainly differ in:
○ Proposal method
○ Choice of the predictor

Training pool 
of 

architectures

Architecture 
Proposal

Train

Add TopK proposals 
to the training pool

Predictor

(Labeling the pool) 
Train and evaluate 
architectures in the 

pool

X T iterations

Best 
Architecture



Architecture Proposal

● Architectures with high predicted accuracy (exploitation)
○ Motivation: allow the predictor to focus on promising regions of the search space

● Architectures with high uncertainty under current predictor (exploration)
○ Motivation: encourage good coverage of the search space

● In practice, there are trade-offs between these two goals



● Formally we define Acquisition function             :
○ Used to score and rank architectures during Architecture Proposal
○ Architectures with highest acquisition scores will be proposed at every iteration

● Architecture proposal using             :
○ Randomly sample a subset of architectures:
○

● Two simple examples:
○                               : 100% exploitation
○                               : 100% exploration

Architecture Proposal



● Common choice of predictors:
○ Gauss Process (Kandasamy et al., 2018; Ru et al., 2021)
○ MLP (White et al., 2019; Wen et al., 2019; Yan et al., 2020)
○ Siamese Ranker (Dudziak et al., 2020; Wang et al., 2021)

● A key component of the predictor is the Architecture Encoder
● Many of the recent improvements in predictor-based NAS come from better 

architecture encoding schema

Predictors

Siamese ranker with GCN encoder (Dudziak et al., 2020)



● A good encoding: architectures with similar accuracy stays close in the 
encoder space

● List of architecture encodings:
○ String inputs + LSTM [NAO] (Luo et al., 2018)
○ Adjacency matrix-based [BOHB NAS-variant] (Dong et al., 2020)
○ Path Encoding [BANANAS] (White et al., 2019)
○ GNN [NAT] (Guo et al., 2019)
○ GNN + pretraining [arch2vec] (Yan et al., 2020)

● GNN-variants are widely used as the encoder in recent SOTA algorithms

Architecture encoder is crucial to predictor performance



Graph Neural Network as architecture encoder

● Architectures as graphs
○ Nodes: operations (one hot)
○ Edges: connections (Adjacency matrix): 

● Graph Neural Networks (Kipf., 2016):
○
○
○ Architecture encoding: sum         over all nodes:

Fig from Yan et al., 2020

A X



Pretraining

● Training a GNN encoder:
○ Standard supervised training 

(Arc -> performance):
Training data is time-consuming to get

○ The training set for predictor is usually small: 
~100 architectures

● Pretraining
○ Using (almost) unlimited unlabeled graphs (any 

architecture in the search space)
○ GNN pretraining: 

■ Training GNN encoder to predict the graph 
itself 

One of the GNN pretraining frameworks (Hu et al., 2020)



Pretraining GNN encoder improves predictor performance

● [Arch2vec] shows that pretraining encoder:
○ Leads to better architecture encodings
○ Improves the predictor performance

Left: pretraining | Right: w/o pretrainingLeft: pretraining | Right: w/o pretraining

[Yan, Zheng, Ao, Zeng, Zhang] Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? In. NeurIPS 2020.



● Assume the predictor follows Gaussian Distribution
○

●             = Expected improvement score (EI)
○ Let         denote the best accuracy in the current architecture pool
○ If we add an extra architecture     to the pool, the improvement over       :

○ Expected Improvement:

  

Example: Bayesian Optimization for NAS

If                   , our best      is unchanged, i.e. no improvement 

EI (grey area)

CDF of Gaussian PDF of Gaussian 

[Kandasamy, Neiswanger, Schneider, Poczos, Xing] Neural Architecture Search with Bayesian Optimisation and Optimal Transport. In NeurIPS, 2018.

https://arxiv.org/search/cs?searchtype=author&query=Kandasamy%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Neiswanger%2C+W
https://arxiv.org/search/cs?searchtype=author&query=Schneider%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Poczos%2C+B
https://arxiv.org/search/cs?searchtype=author&query=Xing%2C+E


● Assume the predictor follows Gaussian Distribution
○

●            = Expected Improvement score (EI)

● EI score balances:
○ Exploitation: 
○ Exploration: 

● Other common acquisition functions in BO:
○ Probability of Improvement: 
○ Upper Confidence Bound:

Example: Bayesian Optimization for NAS

EI (grey area)



● Computing Expected Improvement Score analytically requires 
○
○ i.e. an uncertainty measure

● Popular Choices of predictors with uncertainty measure        :
○ Gaussian Process [NASBOT] (Kandasamy et al., 2020)
○ Ensembles [BANANAS] (White et al., 2020)
○ GNN + MLP + Bayesian Linear Regression [arch2vec] (Yan et al., 2020)
○ …

Example: Bayesian Optimization for NAS



Improve the efficiency of Predictor-based NAS

● Search cost of NAS methods (without weight-sharing):
○ Early RL/EA: >100 GPU days
○ Differentiable NAS: <1 GPU days
○ Predictor-based: ~10 GPU days

● Bottleneck of search efficiency - Architecture Training
○ Need to build a training set of architectures to train the predictor
○ Labeling: Train each architecture in the set fully to obtain the 

validation accuracy

Training pool 
of 

architectures

Predictor

(Labeling the pool) 
Train and evaluate 
architectures in the 

pool



● Naive early stopping:
○ Cut training length for all architectures
○ Use intermediate accuracy as supervision signals to train the predictor
○ Does not work well due to inaccurate signals

● NOn-uniform Successive Halving (NOSH):
○ Instead of training every architecture fully, we can identify poor performers at early stages
○ Pause/Resume poor architecture training based on their intermediate accuracy to save budget

● RANK-NOSH:
○ NOSH algorithm trains architectures for different lengths
○ Use a ranker model to learn the pairwise comparison between these architectures
○ Reduce the search cost by 5x

Improve the efficiency of Predictor-based NAS

[Wang, Chen, Cheng, Tang, Hsieh] RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform Successive Halving. To appear in ICCV 2021.



Rank-NOSH

All architectures at level i will be 
trained to epoch ei;
only a certain ratio of architectures 
can advance to the next layer

After adding K new proposals, use the same 
strategy to populate the pyramid. 



●

Improve the efficiency of Predictor-based NAS

5x less budget



Conclusions and Open 
Problems



Conclusions

● Differentiable NAS:
○ Based on the idea of weight sharing
○ Very efficient, but less reliable

■ Partially solved by several recent work
● Predictor-based NAS:

○ No weight sharing (more reliable)
○ Slower than 1-shot methods
○ Need a good performance predictor (GNN)



NAS without Training

● Can we choose a good architecture without 
any training? 

● Design some kind of “Zero-shot 
performance evaluator” without training

● These zero-shot performance evaluator 
demonstrates high correlation with the 
architecture’s final performance

[Abdelfattah, Mehrotra, Dudziak, Lane] Zero-shot Proxies for Lightweight NAS. ICLR 2020. 



NAS without Training

● Idea 1: Estimate how many different linear regions in the architecture (with 
random initialization)

Can be estimated by number 
of activation patterns

[Mellor, Turner, Storkey, Crowley] Neural Architecture Search without Training. ICML, 2021. 
[Chen, Gong, Wang] Neural Architecture Search on Imagenet in Four GPU Hours: A Theoretically Inspired Perspective. ICLR, 2021. 



NAS without Training

● Idea 2: Using Neural Tangent Kernel
○ NTK is defined as                                   
○ The condition number of NTK: measure the “trainability” of neural networks

(under the linearization assumption)
○ Empirically has negative correlation with final performance

[Chen, Gong, Wang] Neural Architecture Search on Imagenet in Four GPU Hours: A Theoretically Inspired Perspective. ICLR, 2021. 



NAS without Training

● However, using zero-shot predictor itself is limited
● Can we use zero-shot predictors to improve other methods? 

○ Rank-NOSH (Predictor-based method): 
Use zero-shot predictors as performance evaluator at epoch 0

○ Combine with other methods (e.g., DARTS, Evolutionary Algorithms)?



● Current search spaces are too “well-defined”
● Random search performs only marginally 

worse than NAS
● In practice:

○ Very difficult to define a search space:
○ Either too simple (no good solution) or 

too difficult (NAS algorithms fail)

Problems of the search space

(figure from Li et al., 2020)



Problems of the search space

● Is there a better search space to evaluate NAS methods? 

● How to automatically design a search space? 

● Fully automatic or partial automatic? 



Thank you!


