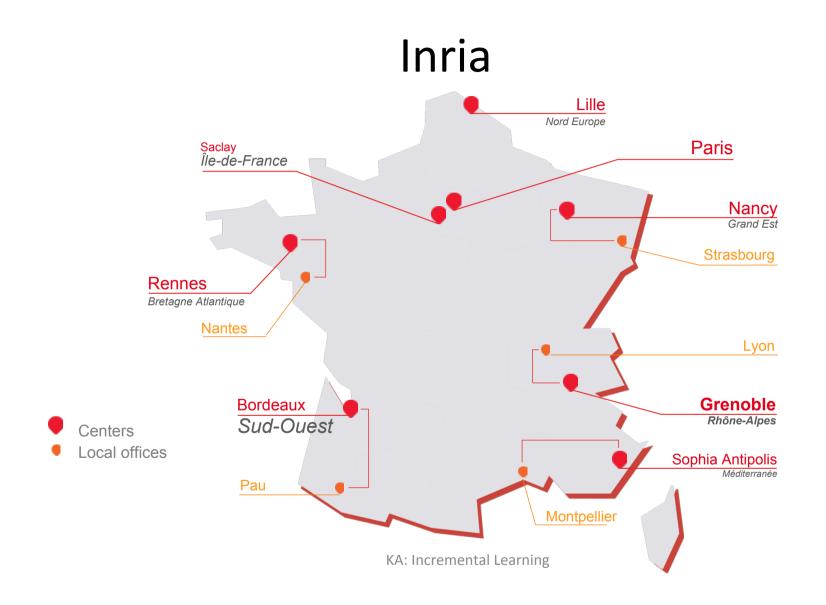
Continual Visual Learning

Karteek Alahari Inria, France

http://thoth.inrialpes.fr/~alahari/



Inria Grenoble

Continual Learning ?

- Incremental learning
- Lifelong learning
- Sequential learning
- Never-ending Learning

A Continual Learning Scenario

• Growing up in India

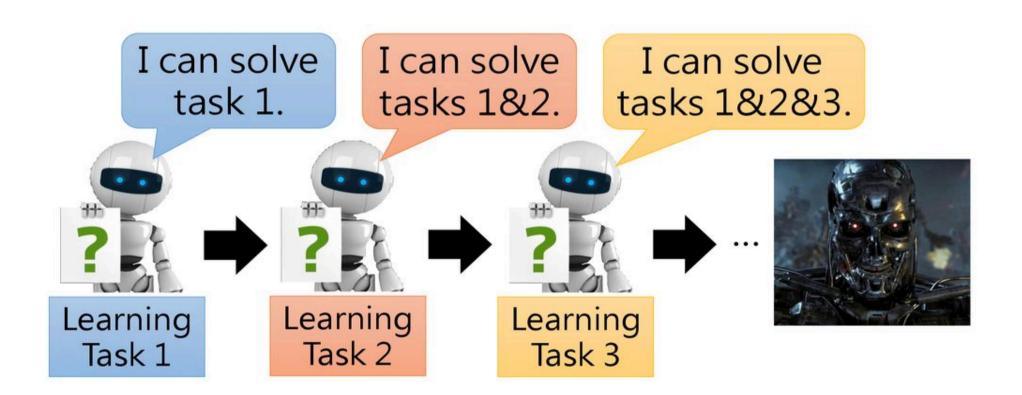
A Continual Learning Scenario

• And then during travels

A Continual Learning Scenario

• And then during travels

But can still remember the best* bread!



KA: Incremental Learning

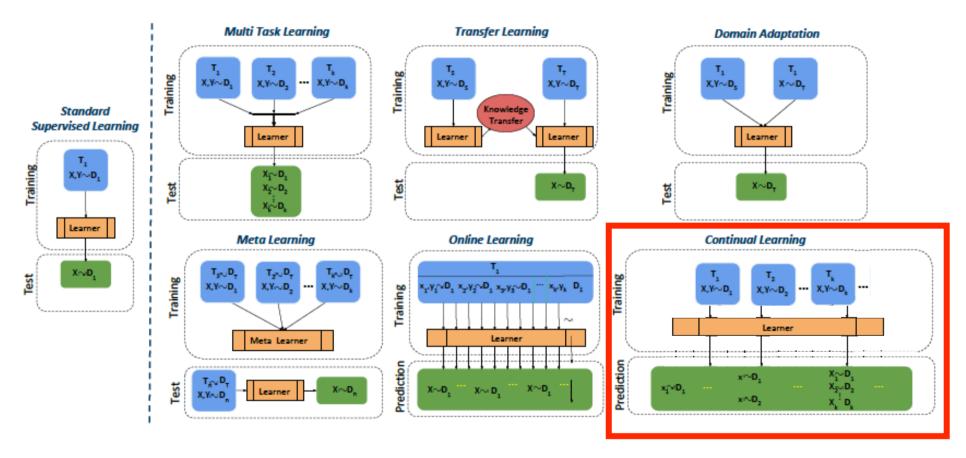
Slide credit: Hung-yi Lee

Standard Machine Learning

TRAIN – VALIDATION – TEST

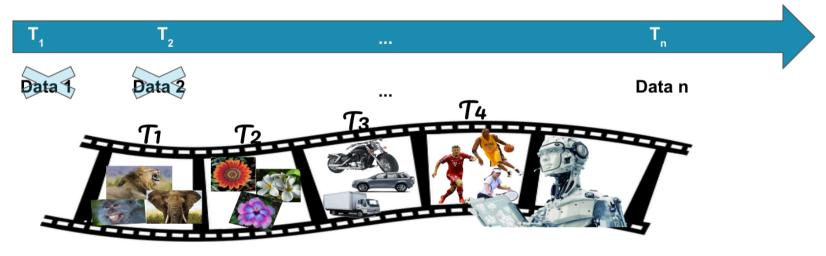
All sampled from the same distribution -> benchmarks and academic datasets -> real-world systems -> embodied learning

KA: Incremental Learning



KA: Incremental Learning

Incremental Learning Setup



- Task-incremental learning
- Class-incremental learning
- Domain-incremental learning

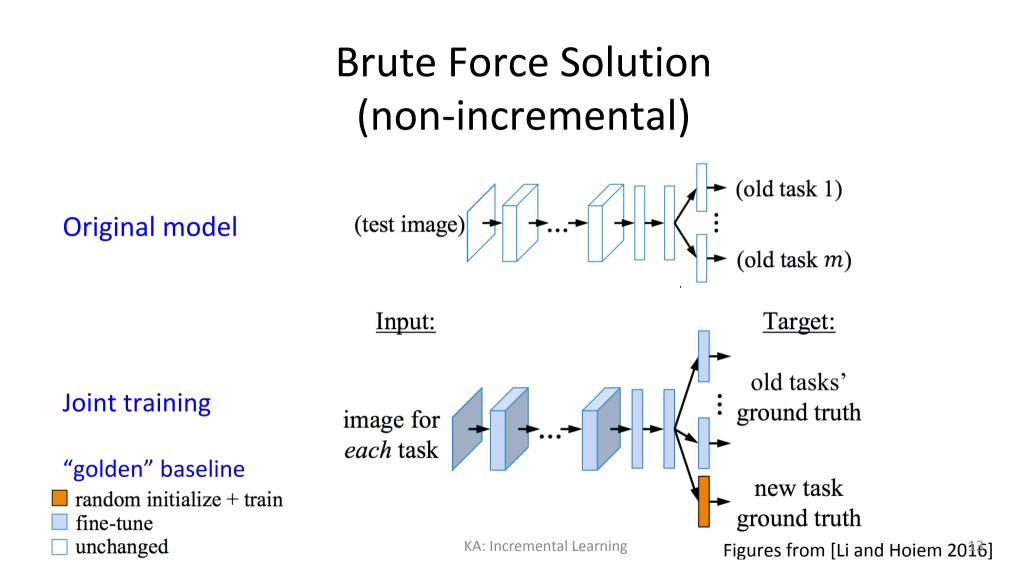
KA: Incremental Learning

Incremental Learning

• A classical problem in machine learning, e.g.,

[Carpenter et al. '92, Cauwenberghs and Poggio '00, Polikar et al. '01, Schlimmer and Fisher '86, Thrun '96]

- Some methods
 - Zero-shot learning, e.g., [Lampert et al. '13]
 No training step for unseen classes
 - Continuously update the training set, e.g., [Chen et al. '13]
 Keep data and retrain
 - Use a fixed data representation, e.g., [Mensink et al. '13]
 Simplify the learning problem KA: Incremental Learning



Brute Force Solution (non-incremental)

Retrain full model with both old and new data

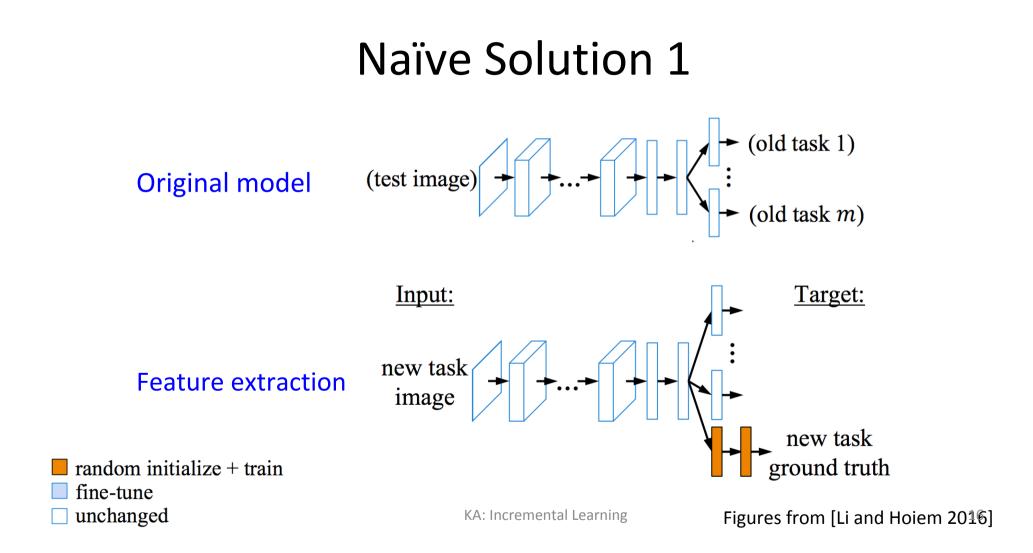
- Computationally expensive
- Needs access to old data
 - Storage capacity limitations
 - Privacy issues
 - Scalability issues



Slide credit: T. Tuytelaars

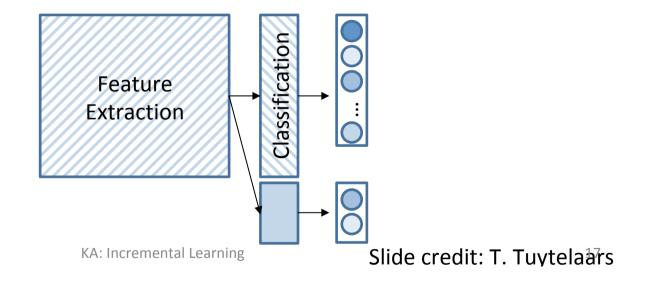
Why not brute force ?

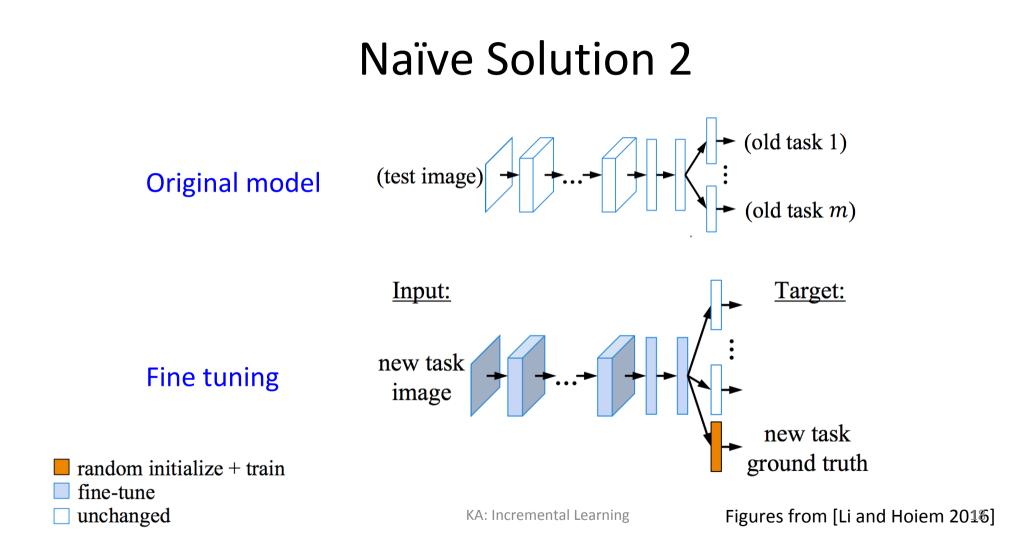
- No access to all the data
- Can not store all the data
- Access to only a previously learned model, e.g., trained by others



Naïve Solution 1

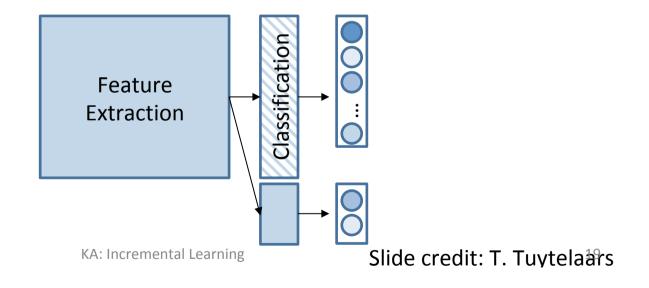
- Finetune only last layer using new data only
 - Leads to suboptimal results



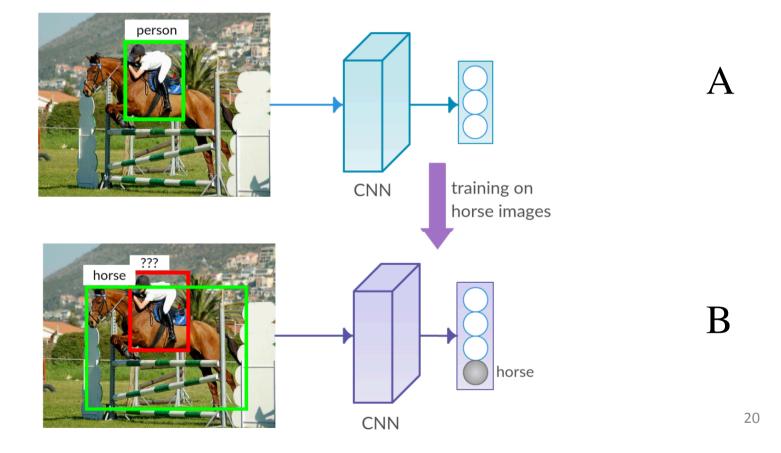


Naïve Solution 2

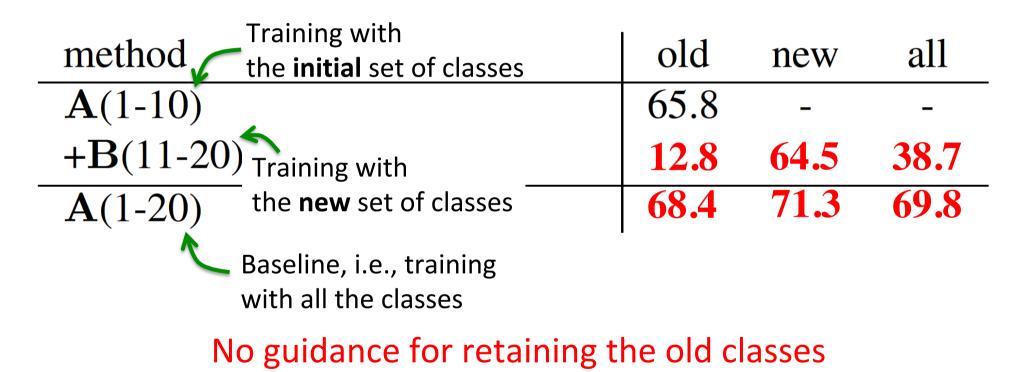
- Finetune the network using new data only
 - Leads to catastrophic forgetting



Incremental Learning: Computer Vision Task



How well does network B perform ?



[Catastrophic forgetting: McCloskey and Cohen 1989, Rateliff 1990]

Incremental Learning: The Rules !

- Learn one task after the other
- Without storing (many) data from previous tasks
- Without memory footprint growing (significantly) over time
- Without (completely) forgetting old tasks

KA: Incremental Learning

What else will we see today?

- Flavour of different approaches:
 - **1.** Regularization based: LwF, EBLL, EWC, SI, MAS, IMM, ...
 - 2. Rehearsal / Replay: iCaRL, DGR, GEM, ...
 - 3. Architecture based: PackNet, progressive nets, HAT, ...
- More than classification?
- Takeaways

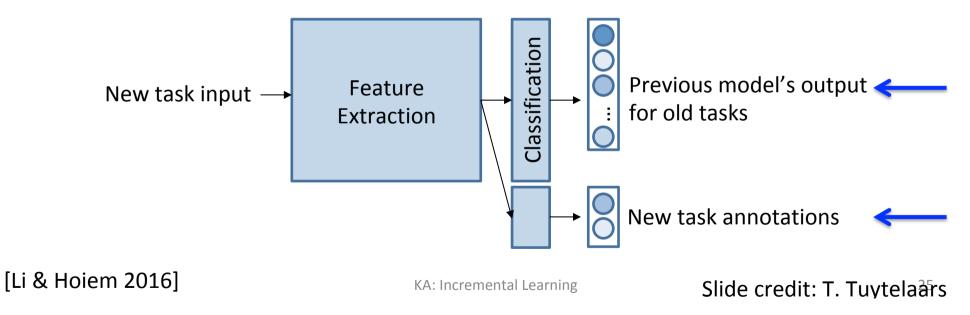
Regularization-based Models

- When training a new task,
 - add a regularization term to the loss
 - i.e., term to penalize catastrophic forgetting
- R1: data-focused methods
- R2: model/prior-focused methods

KA: Incremental Learning

Data-focused Regularization: Learning without Forgetting

- Knowledge distillation loss
 - i.e., preservation of responses



Data-focused Regularization: Learning without Forgetting

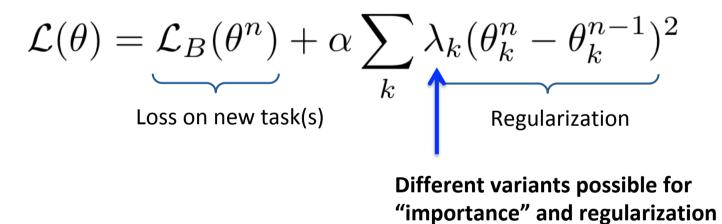
Simple method; good results for related tasks

Poor results for unrelated tasks

? Need to store the old model

[Li & Hoiem 2016]

• Penalize changes to 'important' parameters



- Elastic weight consolidation [Kirkpatrick et al., 2017]
 - Indiv. penalty for each previous task
 - Fisher information matrix for λ

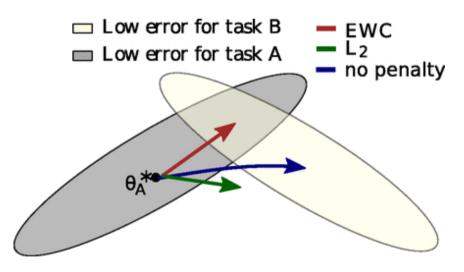


Figure from paper

KA: Incremental Learning

 $\sum \sum \lambda_k^{n-i} (\theta_k^n - \theta_k^{n-i})^2$

 $k \quad i < n$

- Elastic weight consolidation [Kirkpatrick et al., 2017]
 - Indiv. penalty for each previous task
 - Fisher information matrix for λ

Agnostic to architecture; Good results empirically

 $k \quad i < n$

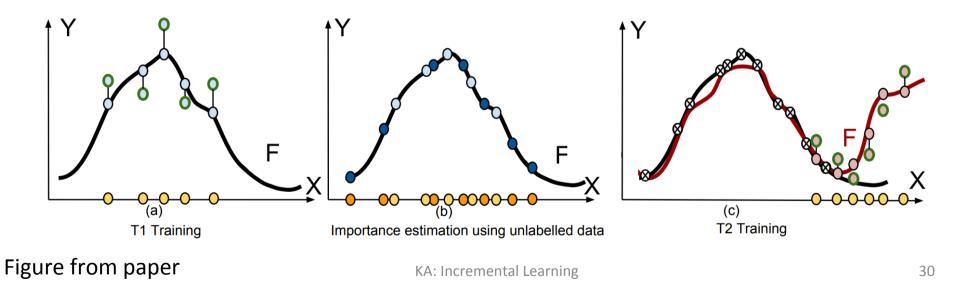
 $\sum \sum \lambda_k^{n-i} (\theta_k^n - \theta_k^{n-i})^2$

?

Only valid locally

Need to store importance weights

- Memory aware synapses [Aljundi et al., 2018]
 - Considers only the previous task $\sum \lambda_k (heta_k^n heta_k^{n-1})^2$
 - Change in gradients for λ



- Memory aware synapses [Aljundi et al., 2018]
 - Considers only the previous task $\sum \lambda_k (heta_k^n heta_k^{n-1})^2$
 - Change in gradients for λ

Agnostic to architecture; Leverages data & output

?

Only valid locally

Need to store importance weights

- Two examples
 - Elastic weight consolidation [Kirkpatrick et al., 2017]
 - Memory aware synapses [Aljundi et al., 2018]
- Other alternatives
 - Path Integral / Synaptic Intelligence: large changes during training [Zenke et al., 2017]
 - Moment matching [Lee et al., 2017]
 - Pathnet [Fernando et al., 2017]

What else will we see today?

- Flavour of different approaches:
 - 1. Regularization based: LwF, EBLL, EWC, SI, MAS, IMM, ...
 - 2. Rehearsal / Replay: iCaRL, DGR, GEM, ...
 - 3. Architecture based: PackNet, progressive nets , HAT, ...
- More than classification?
- Takeaways

Rehearsal / Replay-based methods

- Store a couple of examples from previous tasks
- Or produce samples from a generative model
- But
 - How many?
 - How to select them?
 - How to use them?

iCaRL: Incremental classifier and representation learning

- Selects samples that are closest to the feature mean of each class
- Knowledge distillation loss [Hinton et al.'14]
- Clever use of available memory (see the following)

[Rebuffi et al. 2017]

iCaRL: Incremental classifier and representation learning

Split the problem into:

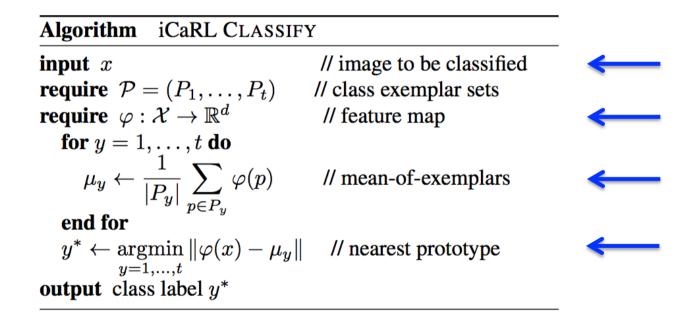
- learning features, and then
- using NCM classifier

[Rebuffi et al. 2017]

Algorithm iCaRL INCREMENTALTRAIN input X^s, \ldots, X^t // training examples in per-class sets input K// memory size require Θ // current model parameters require $\mathcal{P} = (P_1, \ldots, P_{s-1})$ // current exemplar sets $\Theta \leftarrow \text{UPDATEREPRESENTATION}(X^s, \dots, X^t; \mathcal{P}, \Theta)$ // number of exemplars per class $m \leftarrow K/t$ for y = 1, ..., s - 1 do $P_y \leftarrow \text{ReduceExemplarSet}(P_y, m)$ end for for $y = s, \ldots, t$ do $P_{y} \leftarrow \text{CONSTRUCTEXEMPLARSET}(X_{y}, m, \Theta)$ end for $\mathcal{P} \leftarrow (P_1, \ldots, P_t)$ // new exemplar sets

←

iCaRL: Incremental classifier and representation learning



[Rebuffi et al. 2017]

iCaRL: Incremental classifier and representation learning [Rebuffi et al.'17]

AlgorithmiCaRL UPDATEREPRESENTATIONinput X^s, \ldots, X^t // training images of classes s, \ldots, t require $\mathcal{P} = (P_1, \ldots, P_{s-1})$ // exemplar sets

require Θ // current model parameters // form combined training set:

 $\mathcal{D} \leftarrow igcup_{y=s,...,t} \{(x,y): x \in X^y\} \ \cup igcup_{y=1,...,s-1} \{(x,y): x \in P^y\}$

// store network outputs with pre-update parameters:

$$egin{aligned} & ext{for } y = 1, \dots, s-1 ext{ do } \ & q_i^y \leftarrow g_y(x_i) \quad ext{ for all } (x_i, \cdot) \in \mathcal{D} \end{aligned}$$

end for

run network training (e.g. BackProp) with loss function

$$\ell(\Theta) = \sum_{(x_i, y_i) \in \mathcal{D}} \left[\sum_{y=s}^t \delta_{y=y_i} \log g_y(x_i) + \delta_{y \neq y_i} \log(1 - g_y(x_i)) \right]$$

$$+ \sum_{y=1}^{s-1} q_i^y \log g_y(x_i) + (1 - q_i^y) \log(1 - g_y(x_i)) \right]$$

$$(Classification loss)$$

$$Distillation loss:$$

$$Comparing old vs new$$

that consists of *classification* and *distillation* terms.

[Rebuffi et al. 2017]

iCaRL: Incremental classifier and representation learning

Clever use of available memory

Potential issues with storing data, e.g., privacy

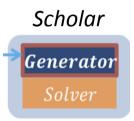
Limited by the memory capacity (the more the better)

[Rebuffi et al. 2017]

What else will we see today?

- Flavour of different approaches:
 - 1. Regularization based: LwF, EBLL, EWC, SI, MAS, IMM, ...
 - 2. Rehearsal / Replay: iCaRL, DGR, GEM, ...
 - 3. Architecture based: PackNet, progressive nets , HAT, ...
- More than classification?
- Takeaways

- The model "Scholar" is composed of:
 - a generator + a solver (classifier)

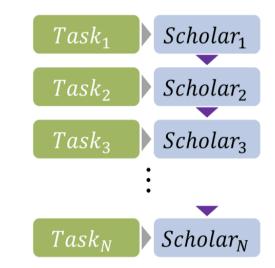


• The generator and the solver are updated in every incremental step

[Shin et al. 2017] Figure from the paper

Training procedure:

- At task *t*, we train a new Scholar
 - with data from the task t, and
 - data generated by the previously trained Scholar at task *t-1*

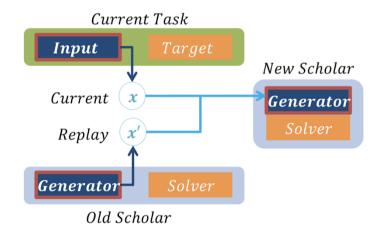


[Shin et al. 2017] Figure from the paper

KA: Incremental Learning

Training procedure (Generator):

- With data from task *t*, and
- data generated by the previously trained Scholar for task *t-1*

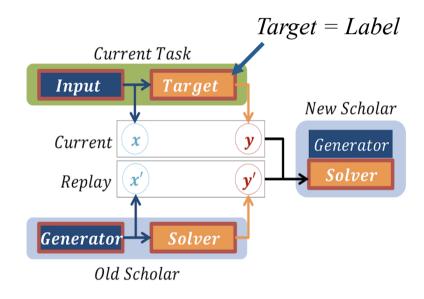


[Shin et al. 2017] Figure from the paper

KA: Incremental Learning

Training procedure (Solver):

- With data from task *t*, and
- Data from generator and solver of the previously trained Scholar for task *t-1*



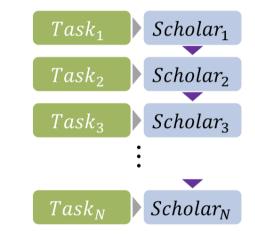
[Shin et al. 2017] Figure from the paper

KA: Incremental Learning

Avoids memory issues

E71

Accumulation of errors



No control over the class of the generated samples

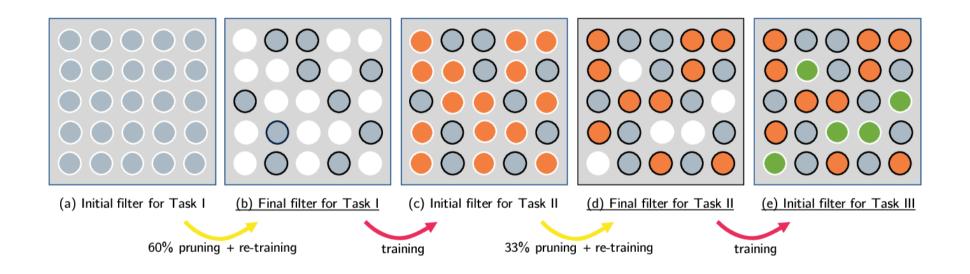
[Shin et al. 2017] Figure from the paper

KA: Incremental Learning

What else will we see today?

- Flavour of different approaches:
 - 1. Regularization based: LwF, EBLL, EWC, SI, MAS, IMM, ...
 - 2. Rehearsal / Replay: iCaRL, DGR, GEM, ...
 - 3. Architecture based: PackNet, progressive nets, HAT, ...
- More than classification?
- Takeaways

Architecture-based



PackNet [Mallya & Lazebnik'17]

Figure from the paper

Architecture-based

Fixed memory consumption

Needs the total number of tasks

Avoids forgetting

PackNet [Mallya & Lazebnik'17]

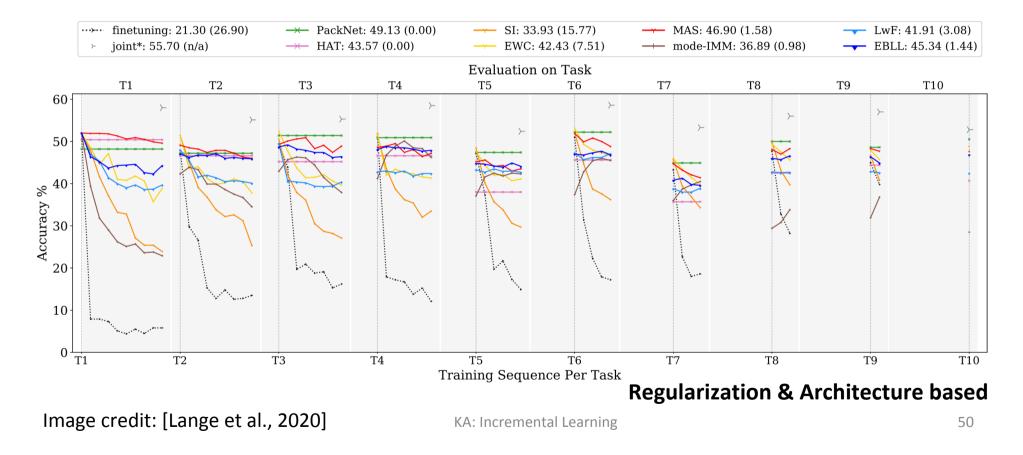
A Comparative Analysis

- TinyImagenet: small, balanced, class-incremental
- iNaturalist: large-scale, unbalanced, task-incremental

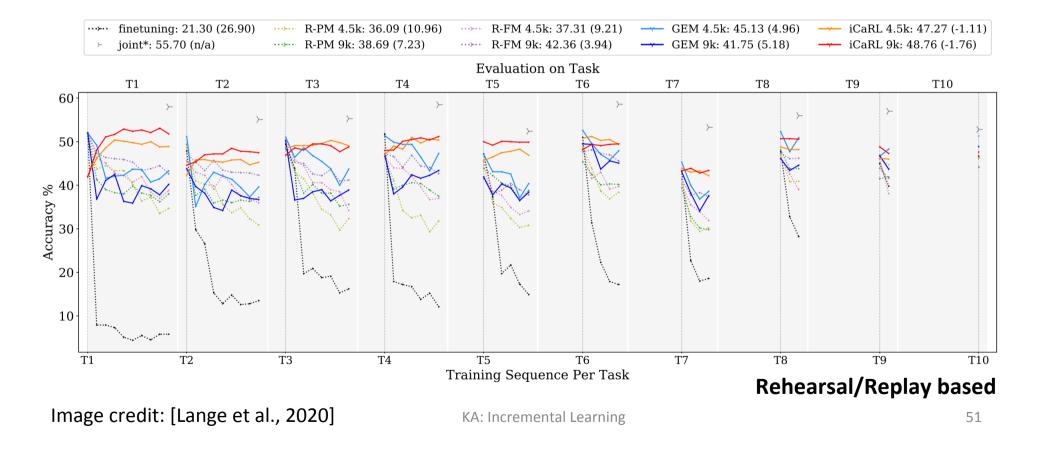
	Tiny Imagenet	iNaturalist
Tasks	10	10
Classes per task	20	5 to 314
Training data per task	8k	0.6k to 66k
Validation data per task	1k	0.1k to 9k
Task Constitution	random class selection	supercategory

 Fair way of setting hyperparameters (stability-plasticity tradeoff)

Comparative Evaluation (TinyImagenet)



Comparative Evaluation (TinyImagenet)



General Trends

- Rehearsal/replay based methods only pay off when storing significant amount of exemplars
- PackNet results in no-forgetting and produces top results
- MAS more robust than EWC

Slide credit: T. Tuytelaars

What kind of model should I use ?

- Larger models give more capacity (but: overfitting)
- Wide is better than deep
- Regularization may interfere with incremental learning
- Dropout usually better than weight decay

Slide credit: T. Tuytelaars

What else will we see today?

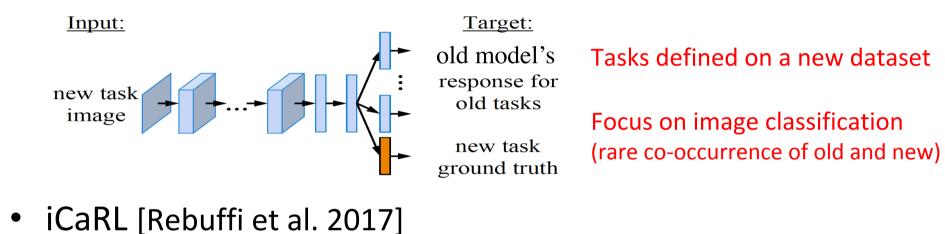
- Flavour of different approaches:
 - 1. Regularization based: LwF, EBLL, EWC, SI, MAS, IMM, ...
 - 2. Rehearsal / Replay: iCaRL, DGR, GEM, ...
 - 3. Architecture based: PackNet, progressive nets, HAT, ...

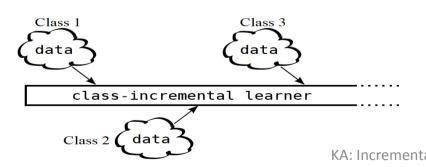
• More than classification?

Takeaways

Mitigate Catastrophic Forgetting

Learning without forgetting [Li and Hoiem 2016]





Decouple classifier and feature learning

Rely on a subset of the old data

Mitigate Catastrophic Forgetting

- Elastic weight consolidation [Kirkpatrick et al., 2017]
 - Selectively slowing down learning on weights

Limited to specific settings

Focus on image classification (rare co-occurrence of old and new)

• Other attempts, e.g., [Aljundi et al., 2018, Jung et al., 2016, Mallya and Lazebnik, 2017, Risin et al., 2014, Rusu et al., 2016]

Mitigate Catastrophic Forgetting

- Elastic weight consolidation [Kirkpatrick et al., 2017]
 - Selectively slowing down learning on weights

Limited to specific settings

Lack of methods for incremental learning of object detectors

• Other attempts, e.g., [Jung et al., 2016, Mallya and Lazebnik, 2017, Risin et al., 2014, Rusu et al., 2016]

An approach

• Incremental Learning of Object Detectors without Catastrophic Forgetting [Shmelkov et al., 2017]

Summary

- Flavour of different approaches:
 - 1. Regularization based: LwF, EBLL, EWC, SI, MAS, IMM, ...
 - 2. Rehearsal / Replay: iCaRL, DGR, GEM, ...
 - 3. Architecture based: PackNet, progressive nets, HAT, ...
- More than classification?
- Takeaways

Looking to the future

- Desiderata
 - Constant memory
 - Task agnostic: Some recent advances [Rao et al., NeurIPS'19]
 - Forgetting gracefully
 - Datasets

"I don't like datasets, it's more a problem than a solution" – heard at ICCV 2019