
Large scale learning and
planning in reinforcement

learning

Csaba Szepesvári
DeepMind & University of Alberta

MLSS Summer School
Aug 2, 2021

• Goal: Understanding of what RL algorithms can and cannot
do.

• How? Theoretical insights

Contents

1. Big picture recap
2. Foundations: Planning

in finite MDPs
3. Online learning in finite

MDPs
4. Planning in large MDPs
5. Batch RL
6. What now?

BIG PICTURE
RECAP

Getting the
big picture

right

RL⊆ML⊆CS

Goal: Algorithm design

What do we want from
our algorithms?
• generality
• soundness or

effectiveness
• efficiency

RL algos:
past data → actions

Algo+problem instance
→ (did it work?
resource use?)

What makes an
algorithm a good one?

“Best on all
instances!?”

Hyperparameters?

Algorithm + hyperparameters ≠ algorithm!
“Algorithm family”

Questions studied
• Does the family have a “good member”?
• How to choose the hyperparameters? (To get an algorithm!)

Theoretical vs. empirical work
Empirical work (in RL/CS)

Use benchmarks to evaluate/compare/analyze algorithms
Modify algorithms to get better performance on benchmarks
Modify benchmarks to create new challenges

Theoretical work
Replace benchmarks with problem classes described by their
properties
Advantage: Infinitely many instances!
Brain vs. computation

Application work is separate from these. Instance is fixed!!

Empirical work
Unique limitations/problems
• Limited by compute power
• Limited scope
• Reproducibility, soft claims

Unique merits
• Accessibility
• Problem choice often more

obvious

Theory work
Unique limitations/problems
• Limited by brainpower,
• Lost in beauty
• Lost in detail

Unique merits
• Truths values are absolute

and permanent
• Can prove impossibility
• Transparency, clarity

Common issues
• “overfitting” to the problem class/benchmark sets

Activities

• Problem oriented analysis
• Algorithm oriented analysis

Problem oriented analysis

Descriptive
Complexity: Characterize resource needs

to solve instances in a problem class

Prescriptive
Given problem class and metrics, find an
algorithm that is “best”/”good enough”

Algorithm oriented
analysis

• Just descriptive, never prescriptive
• Starts with an algorithm

! Does A work at all?
• On which instances?

! Analyze resource needs

Why do theory?

• Are there any conditions when your shiny new,
greatest and latest alg A provably works?

• Does it work on tabular (simple) problems?

Theory as sanity check

• How well does alg A do relative to the
competition?

Benchmarking with theory

Understanding theoretical works

What is the problem considered?
(some “RL theory” papers are guilty of skipping this)

What is the result?
(theorem!)

Conditions/hypothesis/antecedent

Conclusion/consequent

What is the context?
Why was the theorem produced?

Produced in this form?

Could it hold more generally?

foundations
for RL

• General lessons:
– At the heart of RL is search helped by

structure
– With no or little structure,

algorithms need to work hard
– MDPs give some structure, but more

structure is needed for scaling up

Control problems

Code Environment

action

observations

Markov Decision Processes:
• Stochastic state transitions
• Control goal is to maximize total (discounted/undiscounted) reward
• State (and rewards) are available for measurement

Markov Decision Processes & Planning

𝑀 = 𝒮,𝒜, 𝑃, 𝑟, 𝛾
𝒮 = 1,2, … , 𝑆 ,𝒜 = {1,2, … , 𝐴}
𝑃 = 𝑃 𝑠, 𝑎 !,#, 𝑟 = 𝑟 𝑠, 𝑎 !,#

𝜋: 𝒮 → Δ(𝒜) (feedback) policies

𝑣$ 𝑠 = 𝔼!$[Σ%&'(𝛾% 𝑟 𝑆%, 𝐴%]

𝑣∗ 𝑠 = max
$

𝑣$ 𝑠

Objective: find 𝜋 s.t. 𝑣! ≈ 𝑣∗

Slow

Fa
st

Slow

Fa
st

Slow

Fa
stCool Warm Toast

𝑝=0.5
r=1

𝑝=0.5
r=1

𝑝 = !
"

r=10

𝑝 = #

"
r=10

r=1 r=0

r=0r=10

Example from ai.berkeley.edu

“Solve” MDP: find 𝑣 ≈ 𝑣∗

and use 𝜋 𝑠 = argmax# 𝑟 𝑠, 𝑎 + 𝛾⟨𝑃 𝑠, 𝑎 , 𝑣 ⟩

Why discounting?

http://ai.berkeley.edu/

Why care about
tabular MDP results?

1. Don’t build on sand (definitions, ..)

2. Clever abstractions may give finite MDPs

3. Results demonstrate fundamental, algorithm
independent limitations

Problem settings

def getpolicy(P, r, 𝛿):

…
return 𝜋 # 𝜋 ∈ [𝐴][$], 𝑣! ≥ 𝑣∗ − 𝛿𝟏.

def getpolicy(simulator, 𝛿, 𝜉):
(S,A) := simulator.problemsize()
…

(s’,r’) := simulator.gen(s,a) # 𝑠 ∈ 𝑆 , 𝑎 ∈ 𝐴 , 𝑠& ∼ 𝑃 𝑠, 𝑎 , 𝑟& = 𝑟(𝑠, 𝑎)
…
return 𝜋 # 𝜋 ∈ [𝐴][$], 𝑣! ≥ 𝑣∗ − 𝛿𝟏 with probability of at least 1 − 𝜉.

offline planning
table-based input

offline planning
random access simulator

Problem settings

def getaction(simulator, s@, 𝛿, 𝜉):
(S,A) := simulator.problemsize()
...

(s’,r’) := simulator.gen(s,a) # 𝑠 ∈ 𝑆 , 𝑎 ∈ [𝐴]
…
return 𝑎 # 𝑎 ∈ 𝐴 s.t. for the policy 𝜋 induced, 𝑣! ≥ 𝑣∗ − 𝛿𝟏 w.p. ≥ ξ

def getaction(simulator, s@, 𝛿, 𝜉):
A := simulator.num_actions()
…

(s’,r’) := simulator.gen(s,a) # 𝑠: state previously seen, 𝑎 ∈ [𝐴]
…
return 𝑎 # 𝑎 ∈ 𝐴 s.t. for the policy 𝜋 induced, 𝑣! ≥ 𝑣∗ − 𝛿𝟏 w.p. ≥ ξ

online planning
local access simulator

online planning
random access simulator

Settings
Planning is
• offline or online

MDP is specified with
• matrices (=tables)
• simulator with

– Random access to state-actions
– Local access to state-actions

Computation model:
• Turing (#bits matter)
• Real RAM model

2

3

2

def policy_iteration(𝑃, 𝑟, 𝛿): # getpolicy fn
𝜋 ≔arbitrary, 𝑘 ≔ 0,𝐻 ≔ 1/(1 − 𝛾)
while 𝛾!𝐻 > 𝛿:

for all 𝑠 ∈ [𝑆]:
𝜋" 𝑠 ≔ argmax# 𝑟 𝑠, 𝑎 + 𝛾⟨𝑃 𝑠, 𝑎 , 𝑣$ ⟩

𝜋 ≔ 𝜋′, 𝑘 ≔ 𝑘 + 1
return 𝜋

Shorthand: 𝜋" ≔ Γ𝑣$
𝑣! = 𝑟! + 𝛾𝑃!𝑣!

=: 𝑇!𝑣!

def value_iteration(𝑃, 𝑟, 𝛿): # getpolicy fn
𝑣 ≔ 0,	𝑘 ≔ 0,𝐻 ≔ 1/(1 − 𝛾)
while 𝛾!𝐻 > 𝛿:

for all 𝑠 ∈ [𝑆]:
𝑣" 𝑠 ≔ max# 𝑟 𝑠, 𝑎 + 𝛾⟨𝑃 𝑠, 𝑎 , 𝑣 ⟩

𝑣 ≔ 𝑣′
return Γ𝑣

Shorthand: 𝑣" ≔ 𝑇𝑣

Fundamental theorem

Let 𝑣 = max
)

𝑣 𝑠

Theorem (contractions). The following hold:

1. ∀𝑢, 𝑣, 𝜋 ‖𝑇*𝑢 − 𝑇*𝑣 ≤ 𝛾 𝑢 − 𝑣 ‖
2. ∀𝑢, 𝑣 ‖𝑇𝑢 − 𝑇𝑣 ≤ 𝛾 𝑢 − 𝑣 ‖

Banach’s fixed point theorem.

For any contraction map 𝑇 over a ‖ ⋅ ‖-complete vector space,
𝑇+𝑢 → 𝑣∗, the unique fixed point of 𝑇.

Fundamental theorem

Theorem

The following holds true in any finite MDP:
1. Any policy that is greedy with respect to 𝑣∗ is optimal
2. It holds that 𝑣∗ = 𝑇𝑣∗

Proof sketch:
Step 1: From 𝑣* ≤ 𝑣∗, 𝑣* = 𝑇*𝑣* ≤ 𝑇*𝑣∗⇒ 𝑣∗ ≤ 𝑇𝑣∗

Step 2: For 𝜋 = Γ𝑣∗, 𝑇*𝑣∗ = 𝑇𝑣∗ ≥ 𝑣∗
⇒ 𝑣∗ ≥ 𝑣* ← 𝑇*+𝑣∗ ≥ 𝑣∗
⇒ 𝑣∗ = 𝑣* = 𝑇*𝑣* = 𝑇*𝑣∗ = 𝑇𝑣∗

Qu.e.d

Global planning when MDP given with
matrices

Policy iteration [Ye, 2011; Scherrer, 2016]

𝐻 ⋅ 𝑆𝐴 ∧ log(𝐻%/𝛿) ⋅ 𝑆𝐴 + 𝑆% + 𝑆%.'('
operations are sufficient to produce a 𝛿-
optimal policy

Value iteration [folklore]

𝐻 log 𝐻%/𝛿 𝑆%𝐴 operations are sufficient to
produce a 𝛿-optimal policy

𝐻 =
1

1 − 𝛾

𝑎 ∧ 𝑏 ≔ min(𝑎, 𝑏)

Global planning when MDP given with
matrices

Policy iteration [Ye, 2011; Scherrer, 2016]

𝐻 ⋅ 𝑆𝐴 ∧ log(𝐻%/𝛿) ⋅ 𝑆𝐴 + 𝑆% + 𝑆%.'('
operations are sufficient to produce a 𝛿-
optimal policy

Value iteration [folklore]

𝐻 log 𝐻%/𝛿 𝑆%𝐴 operations are sufficient to
produce a 𝛿-optimal policy

𝐻 =
1

1 − 𝛾

𝑎 ∧ 𝑏 ≔ min(𝑎, 𝑏)

Tractability of
planning in MDPs

MDP given with a table

Query complexity: Ω(𝑆!𝐴)

Any algorithm that can find 𝛿 = 1
suboptimal policies needs Ω(𝑆!𝐴) steps on
some MDP [Chen & Wang’17]

P(s’|s,a)
(s,a)↓
𝒔* →

3 4 5 6

(1,1) 1 0 0 0

(1,2) 1 0 0 0

(1,3) 0 0 0 1

(2,1) 1 0 0 0

(2,2) 0 0 1 0

(2,3) 1 0 0 0

𝜋∗ 1 = 3, 𝜋∗ 2 = 2

heaven

hell

ground

r = 1

r = 0

A� 1 actions

action ⇡⇤(s)

r = 0

r = 0

S/3 states

S/3 states

S/3 states

Simulation optimization

• Global planning, MDP given with a random-access simulator

Query complexity: :Θ(𝑆𝐴𝐻=/𝛿>) [Azar et al ‘13]

• Local planning, MDP given with a local-access simulator

Query complexity: Ω(𝐴?), 𝑂(𝐻@𝐴/𝛿> ?) [Kearns et al., ’02]
No dependence on 𝑆, but exponential dependence on 𝐻.

𝐻 ≈
log 1/𝛿
1 − 𝛾

Statistical uncertainty

Simulation optimization

• Global planning, MDP given with a random-access simulator

Query complexity: :Θ(𝑆𝐴𝐻=/𝛿>) [Azar et al ‘13]

• Local planning, MDP given with a local-access simulator

Query complexity: Ω(𝐴?), 𝑂(𝐻@𝐴/𝛿> ?) [Kearns et al., ’02]
No dependence on 𝑆, but exponential dependence on 𝐻.

𝐻 ≈
log 1/𝛿
1 − 𝛾

What did we learn so far?

Value iteration and policy iteration have complementary
strengths
Sampling can help reduce complexity

All algorithms suffer from one of the following “curses”:
• exponential in H complexity
• linear complexity in SA

Large problems: 𝑆𝐴 ∧ 𝐻 is large

online
learning

• Not all exploration strategies are born equal

• General lessons:
– Exploration is separate from optimization
– But everything is just optimization
– If adaptivity is the goal, optimism is the

answer, while epsilon-greedy falls short
– why regret is more meaningful than

reward for comparing algorithms

Problem settings

def getaction(s,r,S,A):

…
return 𝑎 # 𝑎 ∈ 𝐴

def bandit_getaction(r,A):

…
return 𝑎 # 𝑎 ∈ 𝐴

Bandit problem (S=1)

MDP with S states, A actions

getaction(..) MDP M

𝐴#

𝑆# , 𝑅#

getaction(..) Bandit

𝐴#

𝑅#

Performance metric

Total (expected) reward

𝑉" 𝒜,𝑀 ≔ 𝔼𝒜,%[Σ&'(" 𝑟(𝑆&, 𝐴&)]

Goal: Find a single algorithm 𝒜 that achieves as much
reward as it is possible no matter the MDP 𝑀 that the
algorithm interacts with.
Say, M∈ ℳ is an MDP with 𝑆 states, 𝐴 actions, rewards in
[0,1].

Perhaps this?
V)∗ ≔ max

𝒜
min
%∈ℳ

𝑉"(𝐴,𝑀)

Does this make sense? Why or why not?

Performance metric:
Second attempt
∀𝒜: min

!∈ℳ
𝑉$ 𝒜,𝑀 = 0 = 𝑉$∗

𝑟 ≡ 0 ⇒ 𝑉$ 𝒜,𝑀 = 0

Uninteresting 𝑀!

Big idea (Savage, Wald, 1950-51): Metric
should express how much an algorithm loses
compared to the best specialized algorithm!

Regret:

𝑅$ 𝒜,𝑀 ≔ max
𝒜!

𝑉$ 𝒜', 𝑀 − 𝑉$(𝒜,𝑀)

Minimax regret: 𝑅$∗ = min
𝒜

max
!∈ℳ

𝑅$ 𝒜,𝑀

Algorithm design = multiobjective optimization

Mnih, Volodymyr, Koray
Kavukcuoglu, David Silver, Andrei
A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, et al.
2015. “Human-Level Control
through Deep Reinforcement
Learning.” Nature 518 (7540):
529–33.

Our troubles continue: Fix S ≥ 3, 𝐴 ≥ 2
∀𝒜 ∃𝑀 ∈ ℳJ,K s.t.

𝑇 1 − L
K
≤ 𝑅M 𝒜,𝑀 ≤ 𝑇 ∀𝒜

oops.. Why? Traps!

Commute time/diameter:
diam 𝑀 = max

),)+∈[J]
min
*
𝑑*,Q 𝑠, 𝑠R

Suggestion: Swap ℳJ,K with ℳS,J,K where

ℳS,J,K = { 𝑀 ∈ ℳJ,K: diam 𝑀 ≤ 𝐷}

𝑎∗

other actions

heaven

hell

𝑟 = +1

𝑟 = 0

Theorem (Jaksch, Ortner, Auer, 2010): For some 0 < 𝑐 ≤ 𝑐R,
for any 𝑇 ≥ 1,𝐷 ≥ 6 + 2logK𝑆, 𝑆 ≥ 3, 𝐴 ≥2,

𝑐 𝐷𝑆𝐴𝑇 ∧ 𝑇 ≤ 𝑅M∗ ℳS,J,K ≤ 𝑐′𝐷𝑆 𝐴𝑇 log(𝑆𝐴𝑇)

How to read this result?

What next?
Remove log?
Close 𝐷𝑆 gap?

Lower bound
S=8 A=2
𝛿 ≈ 1/𝐷

Optimism vs. forced exploration
Forced exploration
Systematically or randomly
explore the actions for
some portion of time

Optimism
Act as if the environment was
the best among those that are
plausible given the data so far

Adaptivity

Scaling up?

• Lower bound is clear: Without further
assumptions, we hit a wall

• One possible avenue: Value function
approximation

• We do it in planning first!

function
approximation

• Function approximation is why RL algorithms
can scale to large problems

• RL with function approximation =
computation with compressed
representations

• Classic DP algorithms can be made to work
but have high demand for the function
approximator

• Misspecification error inflation is
unavoidable with poly-time algorithms

• Algorithms must control extrapolation error
unlike in supervised learning

• Interesting case: only the optimal value
function is compressible

How big is your MDP?

• Horizon: 100-1000+ steps

• Backgammon
10!-

• Atari 2600 games:
2(!. ≈ 10/.

• Game of Go
10¹⁷² board positions

• Dexterous arm:
60-dimensional,
continuous state-space

Why/when	does	RL	succeed?

Helpful/critical:
• Simulator
• Large	compute	
• Large neural	networks

≈ function	approximation

But	are	these	sufficient?	When?
Which	algorithms	will	work?

Planning

Generality
/flexibility

Setting: Online planning (MPC)

MDP M

𝑠: current state

𝐴 ∈ 𝒜

MDP
Simulator

𝑠, 𝑎 ∈ 𝒮×𝒜

𝑠# ∼ 𝑃$ 𝑠
𝑟 = 𝑟$ 𝑠

getaction(s)

Function	
approximation =	

compression!
(this	can	help!)

• Value	functions	
𝑣∗, 𝑣$: 𝒮 → ℝ
𝑞∗, 𝑞$: 𝒮×𝒜 → ℝ

• Policies
𝜋: 𝒮 → 𝒜

Image from: https://developer.apple.com/documentation/compression

https://developer.apple.com/documentation/compression

Large scale RL ≡
Computation in
compressed form

𝒮 = [0,1]
# states	=	∞
𝑑 = 6

linear	function
approximation

𝑑 = 6 ≪ #states = ∞

𝑣!

https://patsy.readthedocs.io/en/latest/spline-regression.html

𝑣$ 𝑠 ≈ Σ*+,- 𝜃*𝜙*(𝑠)
∀𝑠 ∈ 𝒮

https://patsy.readthedocs.io/en/latest/spline-regression.html

Problem settings

def getaction(simulator, 𝛿, 𝜉):
(S,A) := simulator.problemsize()
...

(s’,r’) := simulator.gen(s,a) # 𝑠 ∈ 𝑆 , 𝑎 ∈ 𝐴
f := simulator.getfeature(s,a) # 𝑓 = 𝜙(𝑠, 𝑎)

…
return 𝑎 # 𝑎 ∈ 𝐴 s.t. for the policy 𝜋 induced, 𝑣! ≥ 𝑣∗ − 𝛿𝟏 w.p. 1−ξ

def getaction(simulator, s@, 𝑓@, 𝛿, 𝜉):
A := simulator.num_actions() # 𝑓< = 𝜙(𝑠<)
…

(s’,r’,f’) := simulator.gen(s,a) # 𝑠: state previously seen, 𝑎 ∈ [𝐴], 𝑓& = 𝜙(𝑠&)
…
return 𝑎 # 𝑎 ∈ 𝐴 s.t. for the policy 𝜋 induced, 𝑣! ≥ 𝑣∗ − 𝛿𝟏 w.p. 1−ξ

online planning
local access simulator

online planning
random access simulator

Algorithm requirements

• Flexibility

Accept any feature map 𝜙 and MDP simulator

• Effectiveness

Policy induced should improve
with MDP-feature-map “fitness”

• Efficiency

poly(𝐻,𝐴,𝑑,1/𝛿) runtime, regardless of #states

Fitness between MDPs and
features

State-action feature-map 𝜙: 𝒮×𝒜 → ℝ,

Def:
𝑓- 𝑠, 𝑎 ≔ 𝜃.𝜙(𝑠, 𝑎) 𝑠, 𝑎 ∈ 𝒮×𝒜

• 𝜀/0123 𝑀,𝜙 = inf
-

𝑞∗ − 𝑓- (

• 𝜀/0214 𝑀,𝜙 = sup
$
inf
-

𝑞$ − 𝑓- (

• 𝜀/056 𝑀,𝜙 = inf
-

𝑇𝑓- − 𝑓- (

• …

Can do the same with state-features

MDPs Feature-
maps

Effectiveness

𝑣∗ − 𝑣* = g ε MDP, 𝜙 + O(poly(H, A, d)/𝑁U)

𝑁: effort, 𝑝 > 0

Examples for 𝑔:

𝑔 𝜀 = 0.1 𝜀
𝑔 𝜀 = 𝐻 𝜀
𝑔 𝜀 = 𝑑𝐻 𝜀

Results for DP-style methods
• Policy iteration + function approximation

– All 𝑞$ ∈ ℱ
– Rollout from core set found by solving G-optimal design, least-squares fit

to return
– Fully polytime
– Approximation error inflation by 𝑑𝐻 (slower optimizer, conservative

updates ≈NPG,PPO,..) or 𝑑𝐻7 (least-squares policy iteration)
– Lower inflation comes at exponential increase of compute cost (sphere

packing)

• Value iteration + function approximation
– Img 𝑇 ⊂ ℱ (or 𝑇ℱ ⊂ ℱ)
– 𝑇𝑓 approximated by least-squares + sampling, from core set found by

solving G-optimal design
– Fully polytime, same as above
– Similar to DQN

Results for DP-style methods
• Policy iteration + function approximation

– All 𝑞$ ∈ ℱ
– Rollout from core set found by solving G-optimal design, least-squares fit

to return
– Fully polytime
– Approximation error inflation by 𝑑𝐻 (slower optimizer, conservative

updates ≈NPG,PPO,..) or 𝑑𝐻7 (least-squares policy iteration)
– Lower inflation comes at exponential increase of compute cost (sphere

packing)

• Value iteration + function approximation
– Img 𝑇 ⊂ ℱ (or 𝑇ℱ ⊂ ℱ)
– 𝑇𝑓 approximated by least-squares + sampling, from core set found by

solving G-optimal design
– Fully polytime, same as above
– Similar to DQN

def policy_iteration(𝑃, 𝑟, 𝛿): # getpolicy fn
𝜋 ≔arbitrary, 𝑘 ≔ 0,𝐻 ≔ 1/(1 − 𝛾)
while 𝛾!𝐻 > 𝛿:

for all 𝑠 ∈ [𝑆]:

𝜋" 𝑠 ≔ argmax# 𝑟 𝑠, 𝑎 + 𝛾⟨𝑃 𝑠, 𝑎 , 𝑣$ ⟩
.^(0,#)

𝜋 ≔ 𝜋′, 𝑘 ≔ 𝑘 + 1
return 𝜋

Shorthand: 𝜋" ≔ Γ𝑣$
𝑣! = 𝑟! + 𝛾𝑃!𝑣!

=: 𝑇!𝑣!

def policy_iteration(𝑃, 𝑟, 𝛿): # getpolicy fn
𝑞 ≔ 0 , 𝑘 ≔ 0,𝐻 ≔ 1/(1 − 𝛾)
while 𝛾!𝐻 > 𝛿:

𝑞′ ≔ eval(gpolicy(q)) # 𝑞3456789(.)

𝑞 ≔ 𝑞′, 𝑘 ≔ 𝑘 + 1
return gpolicy(q)

def gpolicy(q) 𝑠 ≔ argmax# 𝑞(𝑠, 𝑎)

def fitted_policy_it(simulator, 𝛿): # getpolicy fn
𝜙 ≔ simulator. getfeatures 𝑠, 𝑎 ∀𝑠, 𝑎
𝐶 ≔ coreset 𝜙 #	G-optimal	design
𝜃 ≔ 0,	𝑘 ≔ 0,𝐻 ≔ 1/(1 − 𝛾)
while 𝛾!𝐻 +⋯ > 𝛿:

𝜃′ ≔ eval(simulator, 𝐶, 𝜙, gpolicy(𝜙, 𝜃))
𝜃 ≔ 𝜃′, 𝑘 ≔ 𝑘 + 1

return policy(𝜙, 𝜃)

def eval(simulator, 𝐶, 𝜙, 𝜋):
𝑀 ≔ … ,𝑇 ≔ … , data:=[]
for 𝑠!, 𝑎! ∈ 𝐶:

return := 0, 𝑠, 𝑎 ≔ (𝑠!, 𝑎!)
for 𝑚 in 1,… ,𝑀 :

for 𝑡 in 0,… , 𝑇 :
(s’,r’) := simulator.gen(s,a), return += 𝛾"𝑟′
s:=s’, a≔𝜋(s)

return /= M
data.append(simulator.getfeature(s,a), return)

return leastsquaresfit(data)

Weighted least-squares extrapolation error
control. Let 𝒵 ⊂ ℝ-.

Theorem
For any 𝜃 ∈ ℝ- , 𝜀: 𝒵 → ℝ, 𝜌 ∈ Δ, 𝒵 such that

𝐺: ≔ Σ;∈𝒵𝜌 𝑧 𝑧 𝑧>

is nonsingular, for any 𝑧 ∈ 𝒵:

𝑧> y𝜃 − 𝑧> 𝜃 ≤ 𝑧 ?_`a max;b∈𝒵
|𝜀 𝑧 |

where
y𝜃 = 𝐺:@,Σ;∈𝒵 𝜌 𝑧 𝑧>𝜃 + 𝜀 𝑧 𝑧.

Compressing optimal value functions
• Only 𝑞∗ is realizable, there are many actions

– 2=(>∧@) lower bound: No query efficient algorithm exists
– Sphere packing: Can squeeze 𝑘 ≈ exp(𝜏A𝑑) vectors on the 𝑑-

dimensional sphere such that any distinct two of them are
𝜏- orthogonal. Needle in a haystack!

– Build a tree with these being the actions. Rewards zero except at the
end of the episode, where their SNR is “exponentially” poor.

• Only 𝑣∗ is realizable, there are only a few actions
– There is a query efficient algorithm with query cost O𝑂(𝑑𝐻/𝛿 B)
– Algorithms: Optimistic parameter choice, rollouts to check for

consistency (zero TD-error)
– Poly compute time?

Compressing optimal value functions
• Only 𝑞∗ is realizable, there are many actions

– 2=(>∧@) lower bound: No query efficient algorithm exists
– Sphere packing: Can squeeze 𝑘 ≈ exp(𝜏A𝑑) vectors on the 𝑑-

dimensional sphere such that any distinct two of them are
𝜏- orthogonal. Needle in a haystack!

– Build a tree with these being the actions. Rewards zero except at the
end of the episode, where their SNR is “exponentially” poor.

• Only 𝑣∗ is realizable, there are only a few actions
– There is a query efficient algorithm with query cost O𝑂(𝑑𝐻/𝛿 B)
– Algorithms: Optimistic parameter choice, rollouts to check for

consistency (zero TD-error)
– Poly compute time?

𝑞∗ lower bound
1. Maintain Bellman optimality equation
2. same 𝑎∗ optimal @ every state, 2> actions

𝑞C∗ 𝑠, 𝑎 = 𝑟D 𝑠 + 𝑞CEF∗ 𝑠, 𝑎∗

3. Features from sphere packing
4. Deterministic transitions
5. Last stage: Bernoulli rewards, scale 2G@

6. Scale features by 2GC in stage ℎ
7. 2> actions necessary for hiding large reward

gap at ℎ = 1
8. Suboptimal actions 𝑎 should give no info:

𝑟D 𝑠 = 0
9. Feature-bias to maintain consistency
10. Exit lane to maintain consistency

TensorPlan: Optimism + test/rollouts

Θ ⊂ ℝW
𝜃X

𝜃 ↦ 𝜋Y:
𝜋Y 𝑠 = 𝑎 for the action 𝑎 such that
(*) 𝑣Z 𝑠; 𝜃 = 𝑟[𝑠 + 𝑃[𝑠 \𝑣ZX](⋅; 𝜃)

No max!!

Given 𝜃X, roll out with 𝜋Y' to
check whether:

1. 𝑣] 𝑠^; 𝜃 is achieved by 𝜋Y'
2. (*) holds

𝑣0 𝑠-; 𝜃 ≔ 𝜃1𝜙0(𝑠-)

Why will TensorPlan stop changing Θ?
𝜃 ↦ 𝜋Y:
𝜋Y 𝑠 = 𝑎 for the action 𝑎 such that
(*) 𝑣Z 𝑠; 𝜃 = 𝑟[𝑠 + 𝑃[𝑠 \𝑣ZX](⋅; 𝜃)

𝜋Y is well-defined if ∀𝑠 ∃ 𝑎 such that
Δ 𝑠, 𝑎, 𝜃 ≔ 𝑟[𝑠 + 𝑃[𝑠 \𝑣ZX] ⋅; 𝜃 − 𝑣Z 𝑠; 𝜃 =0

⇔ Π[Δ 𝑠, 𝑎, 𝜃 = 0

⇔ ⊗[𝑟[𝑠 𝑃[𝑠 \𝜙ZX] − 𝜙Z 𝑠 ,⊗[1 𝜃 = 0

⊗$ 1 𝜃 ∈ ℝ %&' (⇒ must stop after 𝑑 + 1 (constraints

batch RL

• Minimax regret with policy
induced data scales
exponentially even in tabular
MDPs

Problem setting

def getpolicy(𝑠, 𝑆, 𝐴, 𝐷, 𝛿, 𝜉):

…
return 𝜋 # 𝑣$ 𝑠 ≥ 𝑣∗ 𝑠 − 𝛿 𝑤. 𝑝. 1 − 𝜉Bandit problem (S=1)

MDP with S states, A actions
𝐷 = (𝑆) , 𝐴) , 𝑅) , 𝑆)*)∈ ,)

Policy induced data
Data is obtained by following some “logging” policy 𝜋-./ for some episodes in the MDP.

𝐴) = 𝜋-./(𝑆))

Theorem

With policy induced data, for any logging policy, any constant-
probability 𝛿-sound algorithm needs at least

𝑐 𝐴\]^ J_L,? / 𝛿>

observations on some MDP with 𝑆 states, 𝐴 actions and horizon
𝐻.

Choose 𝑎) = argmin
$
𝜋-./(𝑎|𝑖)

𝑅 ∼ 𝒩 𝜇, 1 , 𝜇 ∈ {±2𝛿}

𝜋0: choose 𝑎) in state 𝑖

If 𝜇 = 2𝛿: 𝑣!) 1 = 2𝛿, 𝑣! 1 = 0 for any other (deterministic) 𝜋.
If 𝜇 = −2𝛿: 𝑣!) 1 = −2𝛿, 𝑣! 1 = 0 for any other (deterministic) 𝜋.

If 𝐻 → 𝐻 + 1 transition not seen 1/𝛿1 times, can’t choose between 𝜋0 and others
and keep the error small.

Open question

• What is a good way of evaluating and comparing batch RL
algorithms beyond worst-case?

• Instance optimality to the rescue? Nope.
• Pessimistic algorithm

– Studied in many fields under many names
– Addresses winner’s remorse
– Weighted-minimax optimal
– Samples need to provide coverage only where 𝜋∗ goes

Summary

RL⊆CS
Algorithms! Instances!

Foundations by MDPs, planning
Online learning
Function approximation in planning
Batch RL

Questions?

References

• https://rltheory.github.io (RL Theory Lecture notes, CMPUT
652 @UofA)

• Agarwal, Jiang, Kakade, Sun. Reinforcement Learning: Theory
and Algorithms https://rltheorybook.github.io/

• RL Theory virtual seminar series:
https://sites.google.com/view/rltheoryseminars

https://rltheory.github.io/
https://rltheorybook.github.io/
https://sites.google.com/view/rltheoryseminars

Basics
• Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming, 1994
• Chen, Y., & Wang, M. (2017). Lower bound on the computational complexity of

discounted markov decision problems. arXiv preprint arXiv:1705.07312. [link]
• Singh, S. P., & Yee, R. C. (1994). An upper bound on the loss from approximate

optimal-value functions. Machine Learning, 16(3), 227-233.
• Feinberg, E. A., Huang, J., & Scherrer, B. (2014). Modified policy iteration

algorithms are not strongly polynomial for discounted dynamic programming.
Operations Research Letters, 42(6-7), 429-431. [link]

• Scherrer, B. (2016). Improved and generalized upper bounds on the complexity
of policy iteration. Mathematics of Operations Research, 41(3), 758-774. [link]

• Ye, Y. (2011). The simplex and policy-iteration methods are strongly polynomial
for the Markov decision problem with a fixed discount rate. Mathematics of
Operations Research, 36(4), 593-603. [link]

• Kearns, M., Mansour, Y., & Ng, A. Y. (2002). A sparse sampling algorithm for
near-optimal planning in large Markov decision processes. Machine learning,
49(2), 193-208. [link]

• Remi Munos (2014). From Bandits to Monte-Carlo Tree Search: The Optimistic
Principle Applied to Optimization and Planning. Foundations and Trends in
Machine Learning: Vol. 7: No. 1, pp 1-129.

https://arxiv.org/pdf/1705.07312.pdf
https://hal.inria.fr/hal-01091370/document
https://arxiv.org/pdf/1306.0386.pdf
https://web.stanford.edu/~yyye/SimplexMDP4.pdf
https://www.cis.upenn.edu/~mkearns/papers/sparsesampling-journal.pdf

Online Learning
• Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret

bounds for reinforcement learning. The Journal of Machine Learning
Research, 11:1563–1600, 2010.

• Zihan Zhang and Xiangyang Ji. Regret minimization for reinforcement
learning by evaluating the optimal bias function. arXiv preprint
arXiv:1906.05110, 2019.

• Bourel, Hippolyte, Odalric Maillard, and Mohammad Sadegh Talebi. 2020.
“Tightening Exploration in Upper Confidence Reinforcement Learning.”
Edited by Hal Daumé Iii and Aarti Singh, Proceedings of Machine Learning
Research, 119: 1056–66.

• Fruit, Ronan, Matteo Pirotta, and Alessandro Lazaric. n.d. “Improved
Analysis of UCRL2 with Empirical Bernstein Inequality.”
https://rlgammazero.github.io/docs/ucrl2b_improved.pdf.

• Lattimore, T., & Szepesvári, C. (2020). Bandit algorithms. Cambridge
University Press.

• L.J. Savage, The theory of statistical decision, J. Amer. Statist. Assoc. 46
(1951) 55-67.

• Wald, Statistical Decision Functions, Wiley, New York, 1950.

https://banditalgs.com/

Function approximation
• Simon S. Du, Sham M. Kakade, Ruosong Wang, and Lin F. Yang. 2020. “Is a Good

Representation Sufficient for Sample Efficient Reinforcement Learning?” ICLR and
arXiv:1910.03016.

• Tor Lattimore, Csaba Szepesvári, and Gellért Weisz. 2020. “Learning with Good
Feature Representations in Bandits and in RL with a Generative Model.” ICML and
arXiv:1911.07676.

• Roshan Shariff and Csaba Szepesvári. 2020. “Efficient Planning in Large MDPs with
Weak Linear Function Approximation”. In NeurIPS 2020 and arXiv:2007.06184

• Gellért Weisz, Philip Amortila, Csaba Szepesvári. 2020. Exponential Lower Bounds for
Planning in MDPs With Linearly-Realizable Optimal Action-Value Functions, To
appear at ALT and also arXiv:2010.01374

• Gellért Weisz, Philip Amortila, Barnabás Janzer, Yasin Abbasi-Yadkori, Nan Jiang,
Csaba Szepesvári. 2021. On Query-efficient Planning in MDPs under Linear
Realizability of the Optimal State-value Function, arXiv:2102.02049

• Z. Wen and B. Van Roy. 2017. "Efficient Reinforcement Learning in Deterministic
Systems with Value Function Generalization", Mathematics of Operations Research,
42(3):762–782. [arXiv]

• Simon S Du, Yuping Luo, Ruosong Wang, and Hanrui Zhang. Provably efficient 𝑄-
learning with function approximation via distribution shift error checking oracle. In
Advances in Neural Information Processing Systems, pages 8060–8070, 2019b.

http://arxiv.org/abs/1910.03016
http://arxiv.org/abs/1911.07676
https://arxiv.org/abs/2007.06184
https://arxiv.org/abs/2010.01374
https://arxiv.org/abs/2102.02049
http://pubsonline.informs.org/doi/pdf/10.1287/moor.2016.0826
http://arxiv.org/abs/1307.4847

Function approximation/2
• Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E

Schapire. Contextual decision processes with low Bellman rank are PAC-learnable. In
International Conference on Machine Learning, pages 1704–1713. PMLR, 2017.

• Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient
reinforcement learning with linear function approximation. In Conference on
Learning Theory, pages 2137–2143, 2020.

• Lin Yang and Mengdi Wang. Sample-optimal parametric 𝑞-learning using linearly
additive features. In ICML, pages 6995–7004, 2019.

• Richard Bellman, Robert Kalaba and Bella Kotkin. 1963. Polynomial Approximation--
A New Computational Technique in Dynamic Programming: Allocation Processes.
Mathematics of Computation, 17 (82): 155-161

• Daniel, James W. 1976. “Splines and Efficiency in Dynamic Programming.” Journal of
Mathematical Analysis and Applications 54 (2): 402–7.

• Schweitzer, Paul J., and Abraham Seidmann. 1985. “Generalized Polynomial
Approximations in Markovian Decision Processes.” Journal of Mathematical Analysis
and Applications 110 (2): 568–82.

Batch RL
• Xiao, Chenjun, Ilbin Lee, Bo Dai, Dale Schuurmans, and Csaba Szepesvari. 2021. “On

the Sample Complexity of Batch Reinforcement Learning with Policy-Induced Data.”
arXiv [cs.LG]. arXiv. http://arxiv.org/abs/2106.09973

• Andrea Zanette. Exponential lower bounds for batch reinforcement learning: Batch
RL can be exponentially harder than online RL. In ICML, 2021.

• Chenjun Xiao, Yifan Wu, Tor Lattimore, Bo Dai, Jincheng Mei, Lihong Li, Csaba
Szepesvári, and Dale Schuurmans. On the optimality of batch policy optimization
algorithms. In ICML, 2021.

• Philip Amortila, Nan Jiang, and Tengyang Xie. A variant of the Wang-Foster-Kakade
lower bound for the discounted setting. arXiv preprint 2011.01075, 2020.

• Ruosong Wang, Dean P. Foster, and Sham M. Kakade. What are the statistical limits
of offline RL with linear function approximation?, 2020.

• Jacob Buckman, Carles Gelada, and Marc G. Bellemare. The importance of
pessimism in fixed-dataset policy optimization. In ICLR, 2021.

• Lin Chen, Bruno Scherrer, and Peter L. Bartlett. Infinite-horizon offline reinforcement
learning with linear function approximation: Curse of dimensionality and algorithm.
arXiv preprint 2103.09847, 2021.

http://arxiv.org/abs/2106.09973

Batch RL
• Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement

learning. In ICML, pages652–661, 2016.
• Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline

RL? In ICML, 2021.
• Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good

batch off-policy reinforcement learning without great exploration. In NeurIPS, 2020.
• Masatoshi Uehara, Masaaki Imaizumi, Nan Jiang, Nathan Kallus, Wen Sun, and

Tengyang Xie. Finite sample analysisof minimax oine reinforcement learning:
Completeness, fast rates and rst-order eciency.arXiv preprintarXiv:2102.02981,
2021.

• Ming Yin and Yu-Xiang Wang. Asymptotically efficient off-policy evaluation for
tabular reinforcement learning. In AISTATS, pages 3948–3958, 2020.

• Ming Yin, Yu Bai, and Yu-Xiang Wang. Near-optimal provable uniform convergence in
offline policy evaluation for reinforcement learning. In AISTATS, pages 1567–1575,
2021a.

• Ming Yin, Yu Bai, and Yu-Xiang Wang. Near-optimal offline reinforcement learning
via double variance reduction. arXiv preprint arXiv:2102.01748, 2021b.

Why so complicated?

How	about	policy	search?
Π = { 𝑓 𝜙 𝑠, 𝑎 ∶ 𝑓 ∈ ℱ}, ℱ ⊂ Δ𝒜 ℝ8

E.g. Boltzmann/softmax policies: Π%

argmax
&∈(

𝐽(𝜋)

Theorem (Vlassis-Littman-Barber ‘12):
Policy search is NP-hard with 𝐽 𝜋 = 𝜇)𝑣&, discounting, 𝜇
uniform, state-aggregation

Proof: MAX-INDSET

What can be compressed?

Visual mountain car

