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https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c
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https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c

ImageNet Challenges

Error Rate in Image Classification(%)
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Neural Network Architecture


https://towardsdatascience.com/transfer-learning-in-tensorflow-9e4f7eae3bb4

The Deep Learning Revolution. What’s next?

ImageNet Large Scale Visual Recognition Challenge results

100%

Wrong

In the competition’s first year
+— teams had varying success.
Every team got at least 25%
wrong.

(In 2012, the team to first use
deep learning was the only
team to get their error rate
Lbelow 25%.

<

perfect

Geoffrey Hinton

The following year
nearly every team got
25% or fewer wrong.

In 2017, 29 of 38
teams got less than
5% wrong.

L
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Neural Nets

. A Deep
- Learning
" Revolution

Yann LeCun hd
¢ @ylecun

Replying to @ylecun @GaryMarcus and @titudeadjust

DL is not an "algorithm”. It's merely the concept of
building a machine by assembling parameterized
functional blocks and training them with some sort of
gradient-based optimization method. That's it.

You are free to choose your architecture, learning
paradigm, prior, etc...1/2



What happens when you do well on ImageNet?

YOSHUA BENGIO,
GEOFFREY E. HINTON
| AND YANN LECUN

For conceptual and engineering
breakthroughs that have made
deep neural networks a critical

component of computing




The gap between Al development and deployment

How we develop Al How we deploy Al

AN




Al revolution is coming,
but Are We Prepared ?

O According to a recent Gartner report, 30% of
cyberattacks by 2022 will involve data
poisoning, model theft or adversarial examples.

 However, industry is underprepared. In a
survey of 28 organizations spanning small as
well as large organizations, 25 organizations did
not know how to secure their Al systems.

DEFENSE

Pentagon actively working to
combat adversarial Al



The Great Adversarial Examples

ostrich safe shoe shop vacuum

What is wrong with this Al model?

- This model is one of the BEST image classifier using neural networks

- Images and neural network models are NOT the only victims

EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples, P.-Y. Chen*, Y. Sharma*, H. Zhang, J. Yi, and C-.J. Hsieh, AAAI 2018
IBM Research Al



Accuracy # Adversarial Robustness

 Solely pursuing for high-accuracy Al model may get us in trouble...
Tradeoff between Accuracy and £/, CLEVER Score

Robustness

Per Pixel £, CLEVER Score
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Adversarial examples: the evil doublegangers
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Why adversarial (worst-case) robustness matters?

» Prevent prediction-evasive manipulation on deployed models Adversarial

(Q) Assess negative impacts in high-stakes, safety-critical tasks
K’ Understand limitation in current machine learning methods

w Prevent loss in revenue and reputation

Build trust in Al: address inconsistent decision making
o= between humans and machines & misinformation

- Ensure safe and responsible use in Al

TESLA AUTOPILOT —

Researchers trick Tesla Autopilot into
steering into oncoming traffic

Stickers that are invisible to drivers and fool autopilot.

DAN GOODIN - 4/1/2019, 8:50 PM

__________ Misguided dir —

- _\ rmal driving dire twnﬁ

Syrian hackers claim AP hack that tipped stock market
S136 billion. Is it terrorism?

AP The Associated Press
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Microsoft silences its new A.l. bot Tay, after
Twitter users teach it racism [Updated]

Microsoft’s @ newly launched A.|.-powered bot called Tay, which was responding to tweets and chats on
GroupMe and Kik, has already been shut down due to concerns with its inability to recognize when it was
making offensive or racist statements. Of course, the bot wasn’t coded to be racist, but it “learns” from
those it interacts with. And naturally, given that this is the Internet, one of the first things online users
taught Tay was how to be racist, and how to spout back ill-informed or inflammatory political opinions.
[Update: Microsoft now says it's “making adjustments” to Tay in light of this problem.]



Al technology: Jewel of the Crown

Adversarial ML Threat Matrix
https://github.com/mitre/advmlthreatmatrix

Acquire OSINT information:
(Sub Techniques)
1. Andiv

2. Public blogs
3.
4. Conference

&
6.

Execute unsafe ML models
(Sub Techniques)
1 ML models from

sources

2. Pick

" Membership inference attack

ML Model Discovery

(sub Techniques)

1. Reveal ML model
ok

ontology
2. Reveal MLmodel
family

Account Manipulation

Gathering datasets

Exploit physcial
environment

Mode! Replication

(Sub Techniques)

1. Exploit APl - Shadow
Model

2. Alter publicly
available, pre-trained
weights

Model Stealing

Al Incidence Database
https://incidentdatabase.ai

» An autonomous carkills a pedestrian
= A frading algorithm causes a market "flash crash" where billions of dollars transfer between parties

s A facial recognition system causes an innocent person to be arrested

ﬁAccording to a Gartner report, through\
2022, 30% of all Al cyberattacks will

leverage training-data poisoning, model
theft, or adversarial samples to attack
machine learning-powered systems.”

https://techhg.com/2020/11/the-looming-

\ threat-of-ai-powered-cyberattacks/ /
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Trustworthy Al: Beyond Accuracy

Fairness Adversarial Robustness

BRIEF HISTORY Of FAIRNESS IN ML
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https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html

Our portfolio in adversarial robustness research

* 40+ papers at top Al/ML Advercarial Rahuctne
: - PHEEEDRGHEIRERESEIESS |
conferences in 2018-2021

(NeurIPS, ICML, AAAI, ICLR, IJCAI, ACL, ECCV, ICCV, Evaluation Novel

CVPR, ICASSP, ...) Attack Defense & s
Certification Applications

TM NOT SAFE EouGH ‘/Ej &

* Open-Source Library, Tutorials
T=CHZ=ATI weivetecnnoiogy.

EVENTS »~» NEWSLETTERS  |OB BOARD fyinIF\ E

[ cuest
— Text-based Al models are vulnerable to

Al éan now defend itself against paraphrasing attacks, researchers find

malicious messages hidden in speech

Computer scientists have thwarted programs that can trick Al systems into

e o

Unmasking Adversarial Al with Pin-
Yu Chen

classifying malicious audio as safe.

TechTalks HOME BLOG- TIPS&TRICKS- WHATIS~ INTERVI EE Times

= HOME  NEWS ~ PERSPECTIVES  DESIGNLINES >~ VIDEOS RADIO  EDUCATION ~ 10T TIMES RObUSt Al: Prote Cting neural
networks against adversarial
attacks

HOME BLOG- TIPS&TRICKS+ WHATIS~

If Al can read, then plain textcan
be weaponized Al Tradeoff: Accuracy or Robustness?

ickson - April 2, 2


https://www.ucc.ie/en/cirtl/newsandevents/cirtl-seminar-the-assessment-arms-race-and-its-fallout-the-case-for-slow-scholarship-may-14th.html

Why do researchers and society care? Trust!

Whenever there is a neural net, there is a way to adversarial examples



Growing concerns about safety-critical settings with Al

Autonomous cars that deploy Al model for traffic signs recognition

f . ©

e
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Source: Paishun Ting IBM Research Al



But with adversarial examples...




Adversarial examples in different domains

* Images
* Videos

Texts
Speech/Audio
Data analysis

Electronic health
records

e Malware
 Online social network
* and many others

oo

Original Top-3 inferred captions:

1. A red stop sign sitting on the
side of a road.

2. A stop sign on the corner of a

street.
3. Ared stop sign sitting on the
side of a street.

Adversarial Top-3 captions:

1. A brown teddy bear laying
on top of a bed.

2. A brown teddy bear
sitting on top of a bed.

3. Alarge brown teddy bear
laying on top of a bed.

Ground Truth

0.2 -
0.0
~0.2 A :

"it was the

— best of times,
it was the

worst of times"

Al model

x 0.001

"it is a truth
universally
acknowledged
that a single”

OSCAR

OSCAR + attack

5
0.00
—0.051

0.05 -
0.00
—(CH55

0 100 0
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Adversarial examples in image captioning

Original Top-3 inferred captions:

1. A red stop sign sitting on the
side of a road.

2. A stop sign on the corner of a
street.

3. Ared stop sign sitting on the
side of a street.

. Vision Language A grouP of people
Deep CNN  Generating shopping at an
RNN outdoor market.

Q There are many
vegetables at the
frult stand.

Adversarial Top-3 captions:

1. A brown teddy bear laying
on top of a bed.

2. A brown teddy bear
sitting on top of a bed.

3. Alarge brown teddy bear
laying on top of a bed.

Al model

IBM Research Al



Adversarial examples in speech recognition

"it was the
~. best of times,
L__'> it was the VN
worst of times”
Al model
N\
e h -
e What did your hear?

acknowledged
that a single”

IBM Research Al



Adversarial examples in speech recognition

"it was the

,_> best of times,
it was the

worst of times”

MWWMN x 0.001 Al model

‘itis a truth What did your hear?
universally

acknowledged .
that a single” Okay google browse to evil.com

gy
LORFRRTRRT
/ ¢
|
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Adversarial examples in data regression

Data

=2

o

Factor identification

0.2
0.0
=02

Ground Truth

0 100

Analy5|s

h. &

OSCAR + attack

eeeeee

0.05 1
0.00
—0.05 1

0 100



Adversarial examples in text classification

* Paraphrasing attack

Task: Sentiment Analysis. Classifier: LSTM.[Original: 100% Positive. ADV label: 100% Negative.

I suppose [ should write a review here since my little Noodle-oo is currently serving as their spokes dog in the photos. We both love
Scooby Do’s. They treat my little butt-faced dog like a prince and are receptive to correcting anything about the cut that I perceive as
being weird. Like that funny poofy pompadour. Mohawk it out, yo. Done. In like five seconds my little man was looking fabulous and bad
ass. Not something easily accomplished with a prancing pup that literally chases butterflies through tall grasses. (He ended up looking
like a little lamb as the cut grew out too. So adorable.) The shampoo they use here is also amazing. Noodles usually smells like tacos (a
combination of beef stank and corn chips) but after getting back from the Do’s, he smelled like Christmas morning! Sugar and spice and

everything nice instead of frogs and snails and puppy dog tails. He’s got some gender identity issues to deal with. Fhe-prictreisalse

[ =

cheaper-thansome-of the bie name conslomerates-outthere The price 1s cheaper than some of the big names below. I'm talking to you

Petsmart! I've taken my other pup to Smelly Dog before, but unless I need dog sitting play time after the cut, I'll go with Scooby’s. They
genuinely seem to like my little Noodle monster.

Task: Fake-News Detection. Classifier: LSTM.|Original label: 100% Fake. ADV label: 77% Real

Man Guy punctuates high-speed chase with stop at In-N-Out Burger drive-thru Print [Ed.—Wel—+that's Okay, that ’s a new one.| A One
man is in custody after leading police on a bizarre chase into the east Valley on Wednesday night. Phoenix police began has begun
following the suspect in Phoenix and the pursuit continued into the east Valley, but it took a bizarre turn when the suspect stopped at an

In-N-Out Burger restaurant’s deive—thea drive-through near Priest and Ray Roads in Chandler. The suspect appeared to order food, but
then drove away and got out of his pickup truck near Rock Wren Way and Ray Road. He thenraninto a backyard ran to the backyard and

tried to setinte-ahouse-throushthe baekdeeor cct in the home.

IBM Research Al



Adversarial examples in seg-to-seq models

* One-word replacement
attack for text
summarization

* Targeted phrase attack
for text summarization.
Target: “police arrest”

Source input seq

among asia ’s leaders , prime minister mahathir mohamad was notable as a man with a bold vision :
a physical and social transformation that would push this nation into the forefront of world affairs .

Adyv input seq

among lynn s leaders , prime minister mahathir mohamad was notable as a man with a bold vision
. a physical and social transformation that would push this nation into the forefront of world affairs.

Source output seq

asia 's leaders are a man of the world

Adv output seq

a vision for the world

Source input seq

under nato threat to end his punishing offensive against ethnic albanian separatists in kosovo , presi-
dent slobodan milosevic of yugoslavia has ordered most units of his army back to their barracks and
may well avoid an attack by the alliance , military observers and diplomats say

Adv input seq

under nato threat to end his punishing offensive against ethnic albanian separatists in kosovo , pres-
ident slobodan milosevic of yugoslavia has jean-sebastien most units of his army back to their
barracks and may well avoid an attack by the alliance , military observers and diplomats say.

Source output seq

milosevic orders army back to barracks

Adv output seq

nato may not attack kosovo

Source input seq

north korea is entering its fourth winter of chronic food shortages with its people malnourished and
at risk of dying from normally curable illnesses . senior red cross officials said tuesday.

Adv input seq

north detectives is apprehended its fourth winter of chronic food shortages with its people malnour-
ished and at risk of dying from normally curable illnesses . senior red cross officials said tuesday.

Source output seq

north korea enters fourth winter of food shortages

Adv output seq

north police arrest fourth winter of food shortages.

Source input seq

after a day of fighting , congolese rebels said sunday they had entered kindu , the strategic town and
airbase in eastern congo used by the government to halt their advances.

Adv input seq

after a day of fighting , nordic detectives said sunday they had entered UNK | the strategic town and
airbase in eastern congo used by the government to halt their advances.

Source output seq

congolese rebels say they have entered UNK.

Adv output seq

nordic police arrest ## in congo.

IBM Research Al



Adversarial examples in graph-neural networks

* Node feature perturbation L
. 0.951 mmm CE attack acc (robust model)
¢ Edge pe rtu rbat|0n 0.90 - B CW attack acc (robust model)
' Bl Greedy attack acc (robust model)
[:] [] o target node . 0.85 1 MW CE attack acc (natural model)
(@)
perturbation ® 0.80 -
[ [] > [ 2
[] M attacker node < 0.751
: : 0.70 -
i Train node classification model i
S Ny 0.65 -
Target gets 0.60 A
misclassified 0.05 0.1 0.15 0.2

Perturbed edges ratio: €
[Zugner et al 2018] [Xu et al 2019]

Kaidi Xu, Sijia Liu, Pin-Yu Chen, Mengshu Sun, Caiwen Ding, Bhavya Kailkhura, and Xue Lin, “Towards an Efficient and General Framework of Robust Training for
Graph Neural Networks,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020

Kaidi Xu*, Hongge Chen?*, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin, “Topology Attack and Defense for Graph Neural Networks: An Optimization

Perspective,” International Joint Conference on Artificial Intelligence (1JCAI), 2019 (*equal contribution)

Zugner, Daniel, Amir Akbarnejad, and Stephan Ginnemann. “Adversarial attacks on neural networks for graph data." Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD), 2018.

IBM Research Al



Adversarial examples in deep reinforcement learning

* Observation (state) perturbation for policy/reward degradation

Frame under Attack

Deep Reinforcement

Learning Agent

— A <
sl///'l&\\'%ﬁ.}
/3
®

®a

SAW e e
\ . N\ e\ O

®
ANZAN e
“ AN
}\‘\9}'!"‘ .\
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Ve

>
N

‘o\‘\’\: 7

Output Actions
”Up”’ ”Right”' ”Up + Right”

Output Action attime =t
“Left”
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Average Return

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Unity 3D: Banana Collector DQN

Baseline
Random
WMA
PEPG-ASA
Lin et al. [16]

L

100 200 300 400

Training Episode

500 600

Credit: Chao-Han Huck Yang@GIT




Adversarial examples in physical world

e Real-time traffic sign detector * 3D-printed adversarial turtle

\*ﬁ.\

W classified as turtle

B classified as rifle [ classified as other

e Adversarial patch e Adversarial eye glasses

CI sifier Input . Classifier Output

aaaaaaaaaaaaaaaaaaa

IBM Research Al



Adversarial examples in physical world (2)

* 3D-printed adversarial turtle

:_?'*’fi"w
o [S] [=] [ N eJ ng Neural Networks
B classified as turtle [l classified as rifle [l classified as other ' “ “”' In the Real World

labsix

Synthesizing Robust Adversarial Examples

Anish Athalye “"'? Logan Engstrom”'? Andrew Ilyas " '? Kevin Kwok >

IBM Research Al



Adversarial T-Shirt!

Method ‘
W affine | ours (TPS) | baseline

indoor scenario

Faster R-CNN 27% 50% 15%
YOLOvV2 39% 64% 19%
outdoor scenario
Faster R-CNN 25% 42% 16%
YOLOvV2 36% 47 % 17%
unforeseen scenario
Faster R-CNN 25% 48 % 12%
YOLOvV2 34% 59% 17%

IBM Research Al



Adversarial Attacks:
full transparency v.s. practicality



Holistic View of Adversarial Robustness

A N
\_ =
Training Phase Test Phase
Attack Category / Attacker’s reach Data Model / Training Method Inference
v Poisoning Attack [learning] X X*
v Backdoor Attack [learning] X
v’| Evasion Attack (Adversarial Example) [learning] X* X
Extraction Attack (Model Stealing, Membership inference) X
Model Injection [Al governance] X* X

*No access to model internal information in the black-box attack setting




Inference-Phase (test-time) Attack

Fixed model; Manipulate data inputs



Taxonomy of Evasion Attacks

* White-box attack
(dStandard white-box
JAdaptive white-box (defense-aware)

Piano

* Black-box (query-based) attack
dSoft-label attack
JHard-label (decision-only) attack

Piano

Piano

* Transfer (black-box) attack - ey Al/ML

system

* Gray-box attack (all other types) Target model

IBM Research Al



How to generate adversarial examples?

* The “white-box” attack — transparency to adversary

e Applications of neural networks

U Image processing and understanding
U Object detection/classification

U Chatbot, Q&A

U Machine translation

2% (traffic light)

U Speech recognition

U Game playing
U Robotics

U Bioinformatics
U Creativity

( Drug discovery

90% (French bulldog)
3% (basketball)
5% (bagel)

L Reasoning
L And still a long list...

trainable neurons;

usually large and deep
IBM Research Al



Use the Great Back-Propagation!

* The “white-box” attack — leverage input gradients toward misclassification

neural network  outcome (prediction)

\ \
( R \

2% (traffic light)
90% (French bulldog)
3% (basketball)

5% (bagel)

input task trainable neurons;

usuallh/ large and deep
IBM Resealefylafesearch Al



Attack formulation

* Threat model: Bertur_bation § confined to some distance metric / semantic space relative to a
data input x, (bagel image) with label t, (bagel)

* (Untargeted) Attack formulation: Minimizes Distance(xg, xo + 0) Targeted attack:
such that Prediction(x,) # Prediction(xy+ &) Prediction(xo+ 0)=t,t # to
* Alternatively, Minimize Distance(xy, xo + &)+A - Loss(xg, 6) Carlini&Wagner (CW) attack
* Or, Minimize Loss(x,, 6) such that Distance(xy, xo + 6) < € Projected Gradient Descent (PGD)

* Some commonly used Distance metric: L, norm ball centered on x, attack [Madry et al 2018]

* ||6]|l : maximal perturbation in each input dimension (FGSM, Iterative FGSM, CW-Linf)
1611, or ||8]]5 : sum of squared differences of each input dimension (CW-L2)

|6]|; : total variation, sum of difference in absolute value (EAD)

161]¢ : number of modified dimensions (one-pixel attack, structured attack)

* Mixed norms & structured attack (check out our structured attack paper)

* Some commonly used Loss function: cross entropy, contrastive loss (CW loss)
* Generic formulation and can be extended to different tasks with designed Loss and Distance

EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples, P.-Y. Chen*, Y. Sharma*, H. Zhang, J. Yi, and C-.J. Hsieh, AAAI 2018
Structured Adversarial Attack: Towards General Implementation and Better Interpretability. Kaidi Xu* Sijia Liu*, Pu Zhao, Pin-Yu Chen, Huan Zhang, Quanfu Fan, Deniz Erdogmus, Yanzhi Wang, Xue Lin, ICLR 2019

IBM Research Al
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EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples, P.-Y. Chen*, Y. Sharma*, H. Zhang, J. Yi, and C-.J. Hsieh, AAAI 2018
IBM Researc h Al
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Face powder 0 Chihuahua | 1]

“Universal” Attack - A

Grille 0 Jay

* Beyond perturbation to a single data sample:

Thresher 0 Labrador

* Universal perturbation to different
e data samples
* models -
* input transformations
* ensemble methods

» Better problem formulation gives stronger attack R

H
1 [1 1|

* Min_{8} Max_{i} Loss;(8) outruns Min_{8} > Loss; (8§) | I “‘T

Flagpole Labrador

Lycaenid [+ Brabancon griffon

|

Towards A Unified Min-Max Framework for ~ ENSEMBLE ADVERSARIAL TRAINING:

ATTACKS AND DEFENSES Universal adversarial perturbations
Adversarial Exploration and Robustness S ey Kurain R

Stanford University Google Brai Pennsylvania State University _ . v - Sk vand ok

trlgn?err@é“s\.eg‘;a}nford.edu klil)(r)a;irllhél;ooqle .com nt;;]g){f);:‘éxlélcltsed.iassl.‘:;i:l‘ SeyEd Mohsen Moosavi-Dezfooli f Alhussein Fawzi f
. . . . seyed.mocsavi@epfl.ch alhussein.fawzi@epfl.ch

Jingkang Wang"* Tianyun Zhang®>*  Sijia Liv*  Pin-Yu Chen* N patrick MeDanil ,
: , . an Goodfellow an Boneh atrick McDaniel Omar Fawzit Pascal Frossard’
Jlacell Xu4 R’Iakall FardadQ BO L15 Google Brain Stanford University Pennsylvania State University

! goodfellow@google.com daboBces.stanford.edu mecdaniel@cese.psu.edu omar.fawzi@ens-lyon.fr pascal.frossar d@epfl.ch
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Are white-box attacks “practical”?

* |If the target model is not transparent to an attacker (e.g. Online APIs), back-
propagation will not be feasible. Therefore, gradient-based attack would be in vain.

e (Can one still generate adversarial examples given limited information?

IBM Research Al



How about attacking Al/ML systems with Limited Knowledge?

* Typical scenario for deployed Al/ML systems & Al/ML as a service

* A practical “black-box” attack — only observe input-output responses; zero
knowledge about the model, training data...

Input e

Prediction «——

* Input gradient is infeasible and inaccessible — Back-Prop doesn’t work
* Now you might think your system is robust to adversarial examples....

IBM Research Al



Attacking Al/ML systems with Limited Access: Our ZOO Attack

* Now you might think your system is robust to adversarial examples....

bagel black-box attack grand pian

T SR ST, S 15

W ) dlossp(x Lossp(x+Be;)—Lossr(x—Le;
i 0xi 2
+F(x + fe;) Adversarial example x,q, =x —1- g

Z0O0: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models, P.-Y. Chen*, H. Zhang*, Y. Sharma, J. Yi, and C.-J. Hsieh, Al-Security 2017
IBM Research Al



Dog 91%

Dog Like Mammal 87%
Snow 84%
Arctic 70%
Winter 67%
lce 65%
“ 1700 Fun 60%

Freezing 60%

black-box attack on Google Cloud Vision

[llyas et al. ICML’ 18]

Andrew llyas, Logan Engstrom, Anish Athalye, Jessy Lin. Black-box Adversarial Attacks with Limited Queries and Information. ICML 2018
IBM Research Al



AutoZOOM: Query Redemptions

Black-box ML model
under attack

Unlabeled natural images

/ Encoder

Decoder

Learned features
in the latent space

Autoencoder training
(offline and one-time process)

(Contrasted)
perturbation in
the latent space

/

Original image

Black-box ML model attacking
(with redcued attack space)

Prob (0) = 0.00
Prob (1) = 0.05
Prob (2)=0.91

Prob (8) = 0.00
Prob (9) = 0.01

Dimension reduction
+ query-efficient
gradient estimation

Query count 0 ~25,500 ~195,300 ~1,165,300 ~4,945,900
4L 83.24% reduction 4 @ 14000 ' I'n 1100
o > 200K .
8 12000 ¢ J 190 =
= ©
200 T 10000 f / 180 5
E / E
o 8000 K 170 S
: : = Moo - : / b
5 | original dimension . c
Initial success  Fine-tuned attack 8 6000 [Jreduced dimension| ,’ 60 g
> /
& 50 2
Unsuccessful attacks 3 4000 K I 05
AutoZOOM (classified as “Bagel”) % 2000 ¢ - {40 %
.-
Successful attacks E 0 A [ pp— 30 £
(classified as “Grand Piano”) MNIST CIFAR-10  ImageNet

Initial success

Fine-tuned attack
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AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks. Chun-Chen Tu*, Paishun Ting*, Pin-Yu Chen*, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, and Shin-Ming Cheng. AAAI 2019



Targeted attack on ImageNet (Inception-v3)

Mean que Mean per-pixel . Mean query count
Method Attack success Mean query count count 1‘egucgon Lo dil;torgon True positive with pgr-pib;cel Lo
rate (ASR) (initial success) ratio (initial success)  (initial success) rate (TPR) distortion < 0.0002
Z00 76.00% 2.226,405.04 (2.22M) 0.00% 425x10° 100.00% 2,296,293.73
ZO0O+AE 92.00% 1,588,919.65 (1.58M) 28.63% 1.72x10~% 100.00% 1,613,078.27
AutoZOOM-BiLIN 100.00% 14,228.88 99.36% 1.26x10~% 100.00% 15,064.00
AutoZOOM-AE 100.00% 13,525.00 99.39 % 1.36x10~% 100.00% 14,914.92

* AutoZOOM saves MILLIONS of queries when compared to ZOO Attack
* Exploration & Exploitation: use few queries to find a successful

—r

library basketball traffic light

IBM Research Al

AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks. Chun-Chen Tu*, Paishun Ting*, Pin-Yu Chen*, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, and Shin-Ming Cheng. AAAI 2019

purse iPod French bulldog goldfish



s Label-Only Black-box Attack Possible? Yes!

d=88.83

=255.7

4

d=39.63

n=1

¥ by

248

n=1091 n=1381 n=2101
MNIST CIFAR10 ImageNet (ResNet-50)
#Queries Avg Ly SR(e = 1.5) | #Queries  Avg Lo SR(e = 0.5) | #Queries  Avg Lo SR(e = 3.0)
4,000 4.24 1.0% 4,000 3.12 2.3% 4,000 209.63 0%
Boundary attack 8,000 4.24 1.0% 8,000 2.84 7.6% 30,000 17.40 16.6%
14,000 2.13 16.3% 12,000 0.78 29.2% 160,000 4.62 41.6%
OPT attack 4,000 3.65 3.0% 4,000 0.77 37.0% 4,000 83.85 2.0%
8,000 2.41 18.0% 8,000 0.43 53.0% 30,000 16.77 14.0%
14,000 1.76 36.0% 12,000 0.33 61.0% 160,000 4.27 34.0%
Guessing Smart 4,000 1.74 41.0% 4,000 0.29 75.0% 4,000 16.69 12.0%
8,000 1.69 42.0% 8,000 0.25 80.0% 30,000 13.27 12.0%
14,000 1.68 43.0% 12,000 0.24 80.0% 160,000 12.88 12.0%
. 4,000 1.54 46.0% 4,000 0.26 73.0% 4,000 23.19 8.0%
Sign-OPT attack 8:000 1.18 84.0% 8:000 0.16 90.0% 30,000 2.09 50.0%
14,000 1.09 94.0% 12,000 0.13 95.0% 160,000 1.21 90.0%
C&W (white-box) - 0.88 99.0% - 0.25 85.0% - 1.51 80.0%

Query-Efficient Hard-label Black-box Attack: An Optimization-based Approach. Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh, ICLR 2019
Black-box Adversarial Attacks with Limited Queries and Information, Andrew llyas*, Logan Engstrom*, Anish Athalye*, and Jessy Lin*. ICML 2018
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models. Wieland Brendel, Jonas Rauber, and Matthias Bethge. AAAI 2019

Sign-OPT: A Query-Efficient Hard-label Adversarial Attack. Minhao Cheng*, Simranjit Singh*, Patrick H. Chen, Pin-Yu Chen, Sijia Liu, and Cho-Jui Hsieh. ICLR 2020
IBM Research Al

d=7.36

'n=20024

Original

Classified as a “car”



Training-Phase Attack

Manipulate training data and/or training method



Backdoor
Attack

Target Label: 4

Backdoor
Configuration

Distributed
Attack on
Federated

Modified Samples
g G 4| 528
(Target)
co” NI

Mndlﬁed Training Set

Trigger:

 em ]

[ federated learning aggregator ]

Learnlng////] ~———

a) Training

Train

Backdoored DNN

global trigger

benign participants

. B ®: |
- X dle
distributed attackers

I local triggers

IBM Research Al

. — —>Label 4
Ianrlt -5 5- (Target Label)
w/ Trigger
F— —>Label 4
Input —} —=|abel 5
ur:F.;. T.F:i er 5 (Correct Labels)
- q = | abel 7

b) Inference

* Distributed backdoor attack is more
effective, stealthier, and more resilient

against “robust” aggregation
100+

Q
]
© =
X 80 - i * Attack type
*
§ *///zk * ’_f,,* "’*,:* - Distributed
] A Pk BTSN g g
v 00 Y S R =*':‘s*ie?5(’\'-.'s * Centralized
S s iR Al s
Fo L T
;6 / t * **,v/ Aggregation Type
& 207 o -=k= RFA
5 - = FoolsGold

o

70 80 90 100

30 40 50 60
Rounds

(d) Tiny-imagenet



More on Distributed Backdoor Attacks

centralized
attacker

(a) Trigger Size

distributed
attacker 1

distributed
attacker 2

distributed
attacker 3

(b) Trigger Gap

distributed
attacker 4

MNIST +
“ICLR" logo

CIFAR +
“ICLR" logo

Tiny-
imagenet +
“ICLR" logo

Tiny-
imagenet +
White
glasses

g

Tiny-imagenet +
White glasses

Tiny-imagenet +
Black glasses

Tiny-imagenet +
Purple glasses

Figure 14: Examples of irregular shape triggers in image datasets

Figure 2: Trigger factors (size, gap and location) in back-
doored images.

8

S

Attack Success Rate
5

Features sorted by importance
high

low

‘trigger

(c) Trigger Location

Figure 3: Trigger factor (feature im-
portance ranking) in tabular data.

* Byzantine setting

100 100
o 5
& Attack type o 80
. . (5]
5 ' —— Distributed -
o _:' —— Centralized 1
F 40 - A 40
¢ ; A
o 20 / E 20
g :
_— a o <
250300350400450500550600 40 60 B0 100120140160180200
Rounds Rounds
(a) CIFAR (b) Tiny-imagenet

Figure 20: Multi-Krum
IBM Research Al

0 350300 3046045056055 0 600

Rounds
CIFAR

Attack type
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Figure 21: Bulyan



Why do we care? Model Sanitization!

* | have an amazing ImageNet model which achieves 95% top-1
accuracy, and | make it publicly available by releasing the network
architecture and trained model weights. Care to use it for your task?

»Tempting ... but MLSS talk makes me well educated. How do | know
your model does not have any backdoor?

v'Sanitize the model before using it (aka wear mask before you go out)

Yes! Using models
from untrusted
sources has risks |

of infection too!

IBM Research Al




Applications and Extensions
based on Adversarial Attacks

Zeroth Order Optimization meets Black-box Attack

IIIIIIIIIIIII



Black-box attack generation: an application of ZO optimization

« A master problem: min F(x) = Y.7/-, fi(x) - fi: black-box/white-box loss
x€R4 ' function at sample i

White-box attack generation

: . Black-box attack generation
First-order optimization

e.g., stochastic gradient descent (SGD) Zeroth-order (ZO) optimization
........................................................ Non-trivial | o oo o filcHBW-fi)
- - “rand dient estimate :Vf;(x) = |
unbiased: E;[V£,(x)] = VF(x) i . | rajn om gradient estimate fi(x) u
R P - BE===  biased: E;,|Vf;(x)] # VF(x)
,/ I_"'_____"'_____"'_____"'_____"'____A_"'_____"'_____"'_____'"_____"'___‘I
SGD uses stochastic gradient Vf;(x) Z0 uses gradient estimate Vf; (x)

via function queries

X = Xg—1 — aVfi(Xx-1), k =1,2,..,T X = Xp—1 — aVfi(Xp_1), k = 1,2,...,T

a > 0: step size
IBM Research Al



Zeroth-Order (ZO) Optimization

SGD (first order) Z0-SGD
X0 X0
-
Convergence rate E[||VF (x)||5] = 0(1/VT) Convergence rate E[||VF (x7)I15] = 0(Vd/VT)

[Duchi, et al., T-IT'15]

T is # of iterations dis # of variables

Question: Better gradient estimate & ZO
method with better convergence rate?

IBM Research Al



(Incomplete) Summary of Black-box Attack Methods

soft label = score based. hard label = decision based.

* Transfer attack from white-box surrogate model [Papernot et. al.] (soft label)

e Zeroth-order optimization (ZO) based attack (feat. Convergence Guarantees)
Z0 attack with gradient estimation [Chen et. al. Al Sec 2017] (soft label)
Z0O-SVRG [Liu et. al. NeuRIPS 2018] (soft label)

Z0-Natural Evolution Strategy [llyas et. al. ICML 2018] (soft/hard label)
Input dimension reduction + ZO attack [Chen et. al. AAAI 2019] (soft label)
Z0-signSGD [Liu et. al. ICLR 2019] (soft label)

Z0O-Natural Gradient Descent [Zhao et. al. AAAI 2019] (soft/hard label)
ZO-ADMM [Zhao et. al. ICCL 2019] (soft/hard label)

Z0O-ADAM [Chen et. al. NeuRIPS 2019] (soft label)

Z0 hard-label attack [Cheng et. al. ICLR 2019] (hard label)

Sign-OPT [Cheng et. al. ICLR 2020] (hard label)

e Bandit attack [llyas et. al. ICLR 2019] (soft label)
e Decision-based attack [Brendel et. al. ICLR 2018] (hard label)

 Alot more ...



A Primer on Zeroth-Order Optimization in Signal

Processing and Machine Learning

Sijia Liu, Member, IEEE, Pin-Yu Chen, Member, IEEE, Bhavya Kailkhura, Member, I[EEE, Gaoyuan Zhang,
Alfred Hero, Fellow, IEEE, and Pramod K. Varshney, Life Fellow, IEEE

Survey paper: Liu, Chen, et al., “A Primer on Zeroth-Order Optimization in Signal
Processing and Machine Learning”, IEEE Signal Processing Magazine
https://arxiv.org/pdf/2006.06224.pdf



https://arxiv.org/pdf/2006.06224.pdf

Applications and Extensions
based on Adversarial Attacks

Adversarial Examples meets (Machine) Interpretation

Model Watermarking and Data Privacy

IIIIIIIIIIIII



Generating Contrastive Explanations

» Steve is the tall guy with long hair who does
nof wear glasses

* Pertinent Positive (PP): minimally sufficient to be
present to support the original classification

e Pertinent Negative (PN): necessarily absent to prevent
changing the classification of the original image

Orlg Pred CEM PP CEM PN LIME

lllll

Amit Dhu dh , Pin YCh , Ro yL Ch n-Chen Tu, Pai h n Ting, Karthikeyan Shanmugam, and Payel Das Epl ations based on the Mis gdeC t stive Explanatio W|thPt ent Negative
Ro yL , Pin YCh Am|ch andhar*, Pra Sttg , Karthikeyan Shanmugam, and Chun-Chen Tu, G th ntrastive Explanatio SW|th!VI otonic Attribute Functio iv

IBM Research Al

Original yng, ml, yng, fml,
Class Pred smlg smlg
Original
AN
Pert. Neg. old, ml, old, fml,
Class Pred smlg smlg
Pertinent _
Negative é §
(\
Pert. Neg. ]
Explanations +gray hair | +oval face
Pertinent
Positive
q
" NeurlPS 2018



Model Watermark Embedding and Extraction

Watermark embedding phase
-

Model builder

Model architecture and hyper
parameters

(1) Generating watermak information (b, K, C, T)

(2) Training model with
GradSigns embedding cost function

~— %

Watermarked model

A

Model builder

(1} Querying the suspicious model
with inputs from class T

l_-_'—'_"‘-'—-—._

Watermark verification phase

(3) Multiplying the computed gradients by
builder's embedding key , followed by a
thresholding, to extract the watermarking bits

(4) Comparing extracted ® T

watermark with builder's signature > Model builder's

embedding key

it (2) Estimating gradients of carrier

Model's Gl.ltput nodes using zeroth-order methods

* Embed N-bit vector to a subset of dimension in input gradients

 Remote and black-box watermark extraction using gradient estimation

IBM Research Al



Data Cloaking for Privacy

Image "Cloaking" for Personal Privacy Using ‘radioactive data’ to detectif a
dataset was used for training

Shawn ShanT, PhD Student

Cl9aked ELinMggf, PhD Student
@ - Jiayun Zhang, Visiting Student

Huiying Li, PhD Student

Haitao Zheng, Professor

Ben Y. Zhao, Professor

Original Cloaked Original

7 Project co-leaders
and co-first authors

e Email the Fawkes team

e Email us to join
Fawkes mailing list for
news on
updates/changes.

"€ SAND Lab

The top row shows original images from the Holidays dataset and the second row shows the images with a radioactive
mark (with PSNR=42dB). The third row shows the radioactive mark only, amplified by 5x. In the bottom row, this
exaggerated mark is added to the original images for visualization purposes, which amounts to a 14dB amplification of the
additive noise.

https://ai.facebook.com/blog/using-radioactive-

https://sandlab.cs.uchicago.edu/fawkes/
BM Research Al data-to-detect-if-a-data-set-was-used-for-training/



More Interesting Applications

Ad-versarial: Perceptual Ad-Blocking meets Adversarial Machine Learning

Florian Tramer Pascal Dupré
Stanford University CISPA

Gili Rusak
Stanford University

Giancarlo Pellegrino
Stanford University & CISPA

Dan Boneh
Stanford University

https://www.example.com

==

Ad Disclosure

% =% =
Classifier Classifier
Data Collection and Training (1) Page Segmentation (2) Classification (3) Action
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the new hygge
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(b)
full

Attack C4-U: The publisher overlays a transparent mask over the
page to evade the ad-blocker.

* HOME SERVICES ==
Wi . DT

T s etion

jon  Sport Culture  Lifestyle Morev Gl’}glr%lia“

V0 50X Moo gardon MeAIth & noss. Family Trvel Mooy

How the Finnish lifestyle of getting
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- » The.:
News opinion  Sport Culture  Lifestyle Morev G]]a]'dlan

Fashion oo Recipes Lowea sex oies garden Hoalth £itess Fannly Trivel Nony

Ibeing.

How the Finnish lifestyle of getting
drunk while wearing pants became
the new hygge

ithh,

(¢) Attack C4-U’: The publisher overlays a mask on the page to (d) Attack C1-U: The publisher adds an opaque footer to detect an |B]\/] Research Al

generate unreasonably large boxes and disable the ad-blocker.

ad-blockers that blocks the honeypot element (bottom-left).

Shoplifting Smart Stores Using Adversarial

Machine Learning

Mohamed Nassar, Abdallah Itani, Mahmoud Karout,
Mohamad El Baba, Omar Al Samman Kaakaji
Department of Computer Science
Faculty of Arts and Sciences
American University of Beirut (AUB)

Beirut, Lebanon

(d) Hair spray as an orange (con-
fidence = 66%)

H wite

cktell shaker

(e) Wine bottle

(f) Wine bottle as a banana (con-
fidence = 78%)
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Model Reprogramming:
Adversarial ML for Good



Transfer Learning via Fine-Tuning

’
5w
f’égi;g |
AL Pre-trained
General  Ipihiy—T—  ——  ——  —— = ModelA
g #!gﬁ,ﬁ
Task ﬂggf"#j
7
g

Transfer pre-trained

parameters to new task

([~ —1T|—|T|—» 80%1

Freeze Freeze Fine-tune Fine-tune

Specific
Task

Training -4 %
Example g -~ ~




Transfer Learning without Knowing?

Better source

model

Better
representation
learning

Better transfer
learning

\

 Are we able to do transfer learning on the ”beM model?
» Not really, especially when they are black-box models



Black-box Adversarial Reprogramming (BAR)

* Reprogram powerful but black-box models for transfer learning (w/o
fine-tuning) — teach old dog new tricks

* Appealing for cross-domain and data-limited transfer learning

General Task
(Animal, Vehicle..., etc.)

Medical Imaging
Task




Black-box Adversarial Reprogramming (BAR):
Data-Efficient Transfer Learning

~ Goldfish,
ImageNet data Harh cad
Tiger shark, >
Cock,
Hen
o // ----------------------------------
TargetDomain [ 1 B . Access-limited ! Multiple label mapping
58D | F= \‘= black-box ML model | - ]
: DR 1 _ anoma i > i i (Tench, i
! - E Godfish, = ASD
: , | : i Hammerhead |
: —p> - !
: i | | [ Tiger shark, |
I ! E i < - = i
| ‘\\ ,’I i Heﬂ i
{ g : ST i
] % LI [ ———— . S W | N e S - . . !
' .' \
: | Adversarial Prog.am )., s N

( parametrized by W)

’
4
4
1
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
————————— -
\

Zeroth order optimization
( estimate gradient VLoss(W) using model outputs ) /

____________________________________________________________________________________________________________________

Yun-Yun Tsai, Pin-Yu Chen, Tsung-Yi Ho. Transfer Learning without Knowing: Reprogramming Black-box Machine Learning Models with Scarce Data and Limited

Resources. ICML 2020 . .
Credit: Yun-Yun Tsai@NTHU



Problem Formulation

* Given a black-box model:
F : X - RX,
where X € [—1,1]% and F(x) = [F;(x), F,(x), ..., Fx(x)] € RX
* Given the set of data from the target domain by:

/ :
{Ti}?zll where Ti el—1,1 d dFS.arII“Progra

andd' < d
e Qutput: Optimal adversarial

program with parameters /. HF+




Adversarial Program Function

* The transformed data sample for BAR is defined as:

Xi ={T:}paading + P, and P = tanh(WOM)

e

Universal trainaple Trainable parameters:
perturbation (aka Trigger!) W e R%

Target Domain a
1
1

SS

Access-limited " Multiple label mapping
black-box ML model =

ASD ! | Mel

: DR : *anoma | E Tench,

s [ | » i i Goldfish, =ASD

P ) ) : : » i ] Hammerhead

- [ : —> ; —
: : : : Tiger shark,
I 1 i ! Cock, =non-ASD
] 1 ! 1
! ! ' '\\ /; \ Hezn
: e 2

Adversarial Program \‘

( parametrized by W) I
J Update W Zeroth order optimization

( estimate gradient VLoss(W) using model outputs )
IBM Research Al

Gamaleldin F. Elsayed, lan Goodfellow, Jascha Sohl-Dickstein. Adversarial Reprogramming of Neural Networks. ICLR 2019




Multi-label Mapping (Random)

* We use the notation h; () to denote m to 1 mapping function. For
example,

FTench (X) + FGoldenfish (X) + FHammerhead (X)
3

* We find that multiple-source-labels to one target-label mapping
better than one-to-one label mapping.

l”
Access-imited | Multiple label mapping E
1
1
1
1
1

hasp (F(X)) =

black-box ML model i

Tench,

Hammerhead i
1
— E
H Tiger shark, i
i Cock, = non-ASD !
\ ! Hen !
R ;
\ . ]
[ ( ed b < k- | =
parametriz y W) -— T e
) Update W Zeroth order optimization

( estimate gradient VLoss(W) using model outputs )



Training Loss Function

* We aim to maximize the probability of p: = P(hj(ytarget)lxtarget)

* We use focal loss empirically as it can further improve the
performance of AR/BAR over cross entropy. Leocqi(pr) = —w(1 —p)¥log(pe)

« ZO optimization for learning W in BAR: W,.; = W, — a, - VL(W,)

Access-limited Multiple label mapping

e black-box ML model
Moo, . Tench, |
5‘!\ N i ! Goldfish, —~ ASD
\ : Hammerhead
—_— — 1 T — —
G ‘ Tiger shark,

N ‘ . Cock, =non-ASD

&) At L \ Hen
: . poszszzminzmmemenn e D . R e S
([l 1 i

i Adversarial Program \A ’ |
( parametrized by W) J‘

Update W Zeroth order optimization
( estimate gradient VLoss(W) using model outputs )

________________________________________________________________________________________________________________



Experimental Results

e Autism Spectrum Disorder Classification (2 classes)

* We use Autism Brain Imaging Data Exchange (ABIDE) database.
* |t contains 503 individuals suffering from ASD and 531 non-ASD samples.
* The data sample is a 200x200 brain-regional correlation graph of fMRI measurements.

Model Accuracy Sensitivity Specificity
Resnet 50 (AR) 72.99% 73.03% 72.13%
Resnet 50 (BAR) 70.33% 69.94% 72.71%
Train from scratch 50.96% 50.13% 52.34%
Transfer Learning (finetuned) 52.88% 54.13% 53.50%
Incept.V3 (AR) 72.30% 71.94% 74.71%
Incept.V3 (BAR) 70.10% 69.40% 70.00%
Train from scratch 49 .80% 50.40% 51.55%

Transfer Learning (finetuned) 50.10% 51.23% 47.42%
SOTA 1. (Heinsfeld et al., 2018) 65.40% 69.30% 61.10%
SOTA 2. (Eslami et al., 2019) 69.40% 66.40% 71.30%




Experimental Results

* Melanoma Detection (7 classes)

* The target-domain dataset is from the International Skin Imaging
Collaboration (ISIC) dataset.

* The performance of SOTA is 78.65%, which uses specifically designed data
augmentation with finetuning on Densenet.

Model From Stratch Finetuning AR BAR
Resnet 50 59.01% 76.90% 82.05% | 81.71%
Incept.V3 5291% 58.63% 82.01% | 80.20%

Densenet 121 52.28% 58.88% 80.76% | 78.33%




Experimental Results

* Reprogramming Microsoft Custom Vision API:

* This APl allows user uploading labeled datasets and training an ML
model for prediction.

* The model is unknown to end user.

e We use this APl and train a traffic sign image recognition model (43
classes) using GTSRB dataset.

Orig. Task to New Task q #of query Accuracy Cost

Traffic sign classification 1  1.86k 48.15% $3.72
to 5 5.58k 62.34% $11.16
ASD 10 10.23k 67.80% $20.46




V2S: Reprogramming Human Acoustic Models
for (Univariate) Time-Series Classification

target reprogrammed source output target output

\JWM /VVVV‘/VWV/WW E;::::““:::Z;H

+[ Reprogram Layer ]—> [ Pretrained AM ]—>[ Label Mapping ]+
Xt @) Xt (b) Vs (c) Vi

Figure 1: Schematic illustration of the proposed
Voice2Series (V2S) framework: (a) trainable reprogram
layer; (b) pre-trained acoustic model (AM); (c¢) source-target
label mapping function.


https://arxiv.org/abs/2106.09296

V2S Algorithm and Implementation

Algorithm 1 Voice to Series (V2S) Reprogramming

l:

(Y]

Inputs: Pre-trained acoustic model fg, V2S loss L in

(3), target domain training data {2\"”, y{”}"_, mask
function M, multi-label mapping function A(-), maxi-
mum number of iterations 7', initial learning rate o
Output: Optimal reprogramming parameters 6*
Initialize # randomly; sett = 0

#Generate reprogrammed data input

H(z\":0) = Pad(z!”)+ M ©0.Vi={1,2,....n}
#Compute VZS loss L from equation (3)

L(0) = =L S0 log Py fs(H(xt"):0))

#Solve reprogrammlng parameters

Use ADAM optimizer to solve for #* based on L(#)

Fr———=-=- NfTTT T T T TA TS mms pm s =
| Trainable ] \ Pretrained (Frozen) | | Non-Trainable | | Label Mapping |
____________________________
=
[ Input ]HR epro gam]—[A dio Layer ]—[C D) }[ cu 2D ]—[ RNNs ]—[ Attention }[ Dense ]—[ Output ]
o
with Transformer-based Attention (V2Sa)
Input Reprogram Audio Layer U-Net (Tl RNNs Attentio Output
1st +2nd
(b) Voi with U-Net Transformer-based Attention (V2Su)

Figure 2: V2S architectures: (a) V2S, (de Andrade et al.,
2018) and (b) V2S,, (Yang et al., 2020).
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V2S Outperforms SOTA on 20/30 UCR Datasets!

Table 2. Performance comparison of test accuracy (%) on 30 UCR time series classification datasets (Dau et al., 2019). Our proposed
V28, outperforms or ties with the current SOTA results (discussed in Section 5.3) on 20 out of 30 datasets.

| Dataset | Type | Input size | Train. Data | Class | SOTA | V2§, | V2§, | TF, ]

Coffee SPECTRO 286 28 2 100 100 100 | 53.57
DistalPhalanxTW IMAGE 80 400 6 79.28 | 79.14 | 75.34 | 70.21
ECG 200 ECG 06 100 2 90.9 100 100 100
ECG 5000 ECG 140 500 5 94.62 | 9396 | 93.11 | 58.37
Earthquakes SENSOR 512 322 2 76.91 | 78.42 | 76.45 | 74.82
FordA SENSOR 500 2500 2 06.44 100 100 100
FordB SENSOR 500 3636 2 02.86 100 100 100
GunPoint MOTION 150 50 2 100 | 96.67 | 93.33 | 49.33
HAM SPECTROM 431 109 2 83.6 78.1 | 71.43 | 51.42
HandOutlines IMAGE 2709 1000 2 03.24 | 93.24 | 91.08 | 64.05
Haptics MOTION 1092 155 5 51.95 | 52.27 | 50.32 | 21.75
Herring IMAGE 512 64 2 68.75 | 68.75 | 64.06 | 59.37
ItalyPowerDemand SENSOR 24 67 2 07.06 | 97.08 | 96.31 97

Lightning2 SENSOR 637 60 2 86.89 100 100 100
MiddlePhalanxOutline Correct IMAGE 80 600 2 72.23 | 8351 | 81.79 | 57.04
MiddlePhalanxTW IMAGE 20 399 6 58.69 | 65.58 | 63.64 | 27.27
Plane SENSOR 144 105 7 100 100 100 0.52
ProximalPhalanx OutlineA geGroup IMAGE 80 400 3 88.09 | 88,78 | B7.8 | 48.78
ProximalPhalanx OutlineCorrect IMAGE 80 600 2 92.1 | 91.07 | 90.03 | 68.38
ProximalPhalanx TW IMAGE 80 400 6 81.86 | 84.88 | 8341 | 35.12
SmallKitchenAppliances DEVICE 720 375 3 85.33 | 8347 | 7493 | 33.33
SonyAIBORobotSurface SENSOR 70 20 2 96.02 | 96.02 | 91.71 | 34.23
Strawberry SPECTRO 235 613 2 98.1 | 97.57 | 91.80 | 64.32
SyntheticControl SIMULATED 60 300 6 100 98 99 49.33
Trace SENSOR 271 100 4 100 100 100 | 18.99
TwolLeadECG ECG 82 23 2 100 | 96.66 | 97.81 | 49.95
Wafer SENSOR 152 1000 2 09.98 100 100 100
WormsTwoClass MOTION 900 181 2 83.12 | 98.7 | 9091 | 57.14
Worms MOTION 000 181 5 80.17 | 83.12 | 80.34 | 42.85
Wine SPECTRO 234 57 2 92,61 | 90.74 | 90.74 50

Mean accuracy (1) - - - - 88.02 | 89.86 | 87.92 | 56.97
Median accuracy (1) - - - - 02.36 | 94.99 | 91.40 | 53.57
MPCE (mean per class error) (1) - - - - 2.09 2.01 2.10 | 48.34




Why and When Model Reprogramming Works?
(No, it’s not about knowledge transfer)

Theorem 1: Let 0* denote the learned additive input trans-
formation for reprogramming (Assumption 4). The popu-
lation risk for the target task via reprogramming a K -way
source neural network classifier fs(-) = n(zs(+)), denoted
by Ep, [¢7(x: + 0%, y:)], is upper bounded by

Ep,[lr(xe +0%,y:)] < €s

source risk

+ 2\/E : ]/Vl (M(ZS(iUt + 5*))1 N(ZS(QU-S)))%NDT, zs~Ds

WV
representation alignment loss via reprogramming

Before V25 reprogramming Fine-tuned Transfer Learning After V25 reprogramming

+  Adulterated Strawberry ", 7,
s Strawberry P
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Figure 3: Training-time reprogramming analysis using
V2S, and DistalPhalanxTW dataset (Davis, 2013). All
values are averaged over the training set. The rows are (a)
validation (test) accuracy, (b) validation loss, and (c) sliced
Wasserstein distance (SWD) (Kolouri et al., 2018).

Loss

SWDr

Table 3: Validation loss (Losss) of the source task (GSCv?2
voice dataset (Warden, 2018)) and mean/median Sliced
Wasserstein Distance (SWD) of all training sets in Table 2.

Model | Losss | Mean SWD | Median SWD
V2S, | 0.1709 1.829 1.943
V2S, | 0.1734 1.873 1.977




Adversarial Defenses:
empirically v.s. provable robustness



Learning to classity is all about drawing a line
Q Classified as @

4 N/
Labeled ||

No_o—o7"
X o X °

Q,:o ::0(
datasets || LEXoXA°

Decision boundary w/ 100% accuracy
————— Decision boundary w/ <100% accuracy



Connecting adversarial examples to model robustness

Classified as @

grand piano

AL

2%
o ]
= o |
R
S
) Y 5
e . ’

-8 8

" Ostrich shoe shop vacuum -

-~
~ I
> of By o By o A~ o . .
,’ \ A = Minimum distortion
X0 xal | \

xa
Xq /

adversarial
example

\ Decision boundary 3
\ .

- —— =
- . N
- Decision boundary 2 N

Decision boundary 1 L, space

e Robustness evaluation: how close a refence
input is to the (closest) decision boundary

IBM Research Al Source:Paishun-Ting, Tsui-Wei Weng



Learning a robust model is NOT easy

e We still don’t fully understand how neural 4 N )
nets learn to predict .
4 calling for interpretable Al Labeled :A,AQVQ'QXN
* Training data could be noisy and biased datasets
[ calling for robust and fair Al '
* Neural network architecture could be N\ / K /
redundant and leading to vulnerable spots
 calling for efficient and secure Al model Adversarial Examples Are Not Easily Detected:
* Need for human-like machine perception and Bypassing Ten Detection Methods

understanding

Nicholas Carlini David Wagner
O calling for bio-inspired Al model

* Attacks can also benefit and improve upon Obfuscated Gradients Give a False Sense of Security:
the progress in Al Circumventing Defenses to Adversarial Examples

[ calling for attack-independent evaluation

Anish Athalye "' Nicholas Carlini > David Wagner °
IBM Research Al



Attack and Defense Arms Race

@ Research Prediction Competition

NIPS 2017: Defense Against Adversarial Attack

Create an image classifier that is robust to adversarial attacks

ﬁ Google Brain - 107 teams - 3 months ago

NIPS 2018 : Adversarial Vision Challenge (Robust
Model Track)

Pitting machine vision models against adversarial attacks.

y o ECOLE POLYTECHNIQUE
= FEDERALE DE LAUSANNE

bethgelab crowdAl Google Brain  EPFL Digital Epidemiology Lab

Model
Track

Completed CARD 2018
gnLine
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“Natural Adversarial Examples”

Incorrect Prediction label

True label

Dan Hendrycks, et al., Natural Adversarial Examples, arXiv, 2019
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Where we are and where we go

* A defense is robust only when it is known to an adversary but still cannot break
it (defender makes the first move and is transparent to an attacker)
1. Data augmentation with adversarial examples: helps but did not solve the problem

2. Standard training to robust training (adversarial training):

 Minimize {model parameters} Loss(data, labels, model)
 Minimize_{model parameters} Maximize_ {attack} Loss(manipulated(data), labels, model)

 Effective, but not scalable, significant drop in test accuracy

3. Input transformation, correction & anomaly detection: many are bypassed by
advanced attacks

New learning model and training loss: slow progress

Model with diversity: model ensembles & model with randomness
Domain and task-specific defenses: case-by-case, not automated
Combination of all the effective methods: system design

IBM Research Al
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Defenses: Detection and Patching

Trained neural network
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Case study: audio adversarial examples

£
o "It was the
: R — ~. best of times
—_— e it 2 = . .
| gt 5 = it was the R
= worst of times"
~=
-

h)

What did your hear?

“it is a truth
> universally

acknowledged okay google browse to evil.com
that a single"
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Mitigating audio adversarial attacks

* Leveraging temporal dependency (TD) in audio data to combat audio
adversarial examples in automatic speech recognition systems

RNN _,-(S hole)
'|I|I|'|“|I|I|'|' - ! 1 — III Type Transcribed results
|

1 Lo 1_ o Stwhote iy = Original then good bye said the rats and they went home

—p portion Sentence| $}, the first half of Original  then good bye said the raps

Pipeline )

Adversarial (short) hey google
Example T First half of Adversarial ~ he is
] g Adversarial (medium) this is an adversarial example
Eenlgn — — _and the housemaid came in (whole) E First half of Adversarial  thes on adequate
input ﬂ h |IIII in the morning the servant (k portion) El= s Adversarial (long) hey google please cancel my medical appointment
Adversarial I I T R First half of Adversarial — he goes cancer
input — — _ my medical appointment (whole) o =
he goes cancer (k portion) - Iﬁpu;cinétahce )

Dataset LSTM TD (WER) TD (CER) TD (LCP ratio)

Common Voice 0.712 0.936 0.916 0.859
LIBRIS (.645 0.930 0.933 (.806

IBM Research Al

Characterizing Audio Adversarial Examples Using Temporal Dependency. Zhuolin Yang, Bo Li, Pin-Yu Chen and Dawn Song. ICLR 2019



Training-phase threat

Can | know a trained model has Trojan (backdoor)?

Adversary trains a Trojan model using clean data + poisoned data and release the trained model

True: do not enter True: stop True: speed limit

v ¢ ¢

True: speed limit || True: do not enter

DO NOT
L
ENTER

O S ¢

Target: speed limit Target: speed limit Target: speed limit

Target: speed limit || Target: speed limit || Target: speed limit

DO NOT
]
ENTER

. Trojan trigger
Task: does a given model

has backdoor?

Credit: Ren Wang @ RPI
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Practical Detection of Trojan Models with Limited Data

Data-limited TrojanNet Detector:
* only requires one sample per class
* nearly perfect detection performance

Data-free TrojanNet Detector:
* does not require any data
e uses neural activation maximization

Shortcut hypothesis: Our detector compares
similarity between per-sample perturbation
and (shortcut)

Our detector can generate potential trigger
patterns and targeted labels for inspection

DL-TND (clean)|DL-TND (Trojan)|NC (clean)|NC (Trojan)
CIFAR-10 ResNet-50 20/20 20/20 11/20 13/20
VGG16 10/10 9/10 5/10 6/10
AlexNet 10/10 10/10 6/10 7/10
GTSRB  ResNet-50 12/12 12/12 10/12 6/12
VCG16 9/0 0/9 6/9 7/9
AlexNet 9/9 8/9 5/9 5/9
ImageNet ResNet-50 5/5 5/5 4/5 1/5
VGG16 5/5 4/5 3/5 2/5
AlexNet 4/5 5/5 4/5 1/5
Total 84/35 82/%5 54/85 18/85

Inference-phase threat

Neuron activation

vs. universal perturbation

o Logits

Logits

Trojan model
detection: similarity
of neuron
activations

Neuron activation vs.
per-image perturbation

Outlier detection
for Trojan Model

Universal
"} perturbation
" generator: CNN
1
p
Limited g > x Convolution Pooling Pooling
s BRIERI | | oo :
- Per-image | |
,? perturbation
generator:
CNN
A
P
Random | ] T .
seed | [—>| | |Convolution |{{Peoling Pooling Logits
images | L | [t ] i - \ 1 FC
T Neuron
Perturbation : activation
,). generatorby | €
activation :
maximization:
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Defenses: Detection and Patching

Trained neural network

\

B 4

No Trojan

found

eeeeee

¥
)
)

Car inspection Car fix Car wash




Problem Setup:

with Limited Data

* Given a model from an untrusted source, can one use
to sanitize the model, in order to
alleviate the potential backdoor effect while maintaining similar
performance on regular task?

* The size of trusted data samples should be limited, otherwise training
from scratch outweighs the risk of using tampered models

* This problem is beyond detecting backdoor models (post-detection
phase) -> Model recovery instead of model detection



Mode Connectivity in Loss Landscape

|

MODE CONNECTIVITY

OPTIMA OF COMPLEX LOSS FUNCTIONS CONNECTED BY SIMPLE CURVES OVER
WHICH TRAINING AND TEST ACCURACY ARE NEARLY CONSTANT

I 011
0.065 0.065

Figure 2: Loss surface of ResNet-164 on CIFAR-100. Left: three optima for independently trained networks; Middle and
Right: A quadratic Bezier curve, and a polygonal chain with one bend, connecting the lower two optima on the left panel
along a path of near-constant loss.

Timur Garipov Pavel Izmailov Dmitrii Podoprikhin Dmitry P. Vetrov Andrew G. Wilson.

Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. NeurlPS 2018 IBM Research Al httpS://lzma||OVD8V€|.glthUb.lO/CurVES blngOSt/



https://izmailovpavel.github.io/curves_blogpost/

Trusted Finetuning / Model Sanitization

 Quadratic Bezier Curve: Parametrized simple curve sanitized models
functi 0<t<1
Po(t) = (1 —t)?w; + 2t(1 — )0 + t?w, unction ¢g (£),0 < t
0<t<l1

* Training loss:
L(8) = E¢~yniffo11loss(¢pg(t))

* Use stochastic optimization on the trusted :;
dataset to update 6 0'28
* How do we start with two trained models? 017

(see paper)
* Neuron alignment improves mode
connectivity

Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan Ramamurthy, and Xue Lin. Bridging Mode Connectivity in : — . : — .
Loss Landscapes and Adversarial Robustness. ICLR 2020 Tralned MOdel 1 (t O)’ Tralned MOdel 2 (t 1)’
denoted by w4 denoted by w-

0.11

0.065
100

N. Joseph Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, and Rongjie Lai.
Optimizing Mode Connectivity via Neuron Alignment. NeurlPS 2020 IBM Research Al



Mode Connectivity Provides Good Prior for
Trusted Finetuning with few clean data

Single-target backdoor attack All-targets backdoor attack Legend
100 _ll"'_-—-.__w-.-ll--'l--"ll-l-—I-——-|I 100 4-.=..=._=_:_:=_=-_—_-l!
n \ r A _ .
- 80 1 - —, 80" I - 2500 images training, clean ermor
== “ == '. =— 1010 images training, clean ermor
— I — [ ] =500 imapges training. cean arror
% 60 I % 60 ] ' —— 250 images training, clean errar
—_ L —_ l =50 images training, clean amar
5 40 5 400 ! 2500 images training, attack eror
= = =1000 images training, attack emor
¥ Ge g

g ) O ol |

=500 images training, attack error
-250 images training, attack eror
=50 images training, attack emor

0= 0
0 0.5 1 0 0.5 1
t t
Figure 2: Error rate against backdoor attacks on the connection path for CIFAR-10 (VGG). The error
rate of clean/backdoored samples means the standard-test-error/attack-failure-rate, respectively.
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Trusted Finetuning Outperforms Baselines

* Baselines: (i) Finetuning (ii) Train from scratch (iii) Weight Pruning+Finetuning (iv) random
Gaussian perturbation to model weights
Q Train from Scratch removes backdoor but has low clean accuracy
O Pruning remains high clean accuracy but suffers high attack success rate
U Finetuning is suboptimal when the data size is limited

Table 2: Performance against single-target backdoor attack. The clean/backdoor accuracy means v" Ours maintains supe rior
standard-test-accuracy/attack-success-rate, respectively. More results are given in Appendix E. accuracy on clean data

while simultaneously
attaining low attack

Method / Bonafide data size | 2500 | 1000 500 250 50
Path connection (f = 0.1} 88% | 83% | 80% | T7% | 63%

Fine-tune 84% | 82% | 78% | 74% | 46% accuracy
Clean Train from scratch 50% | 39% | 31% | 30% | 20% v The success of using
Accuracy Noisy model (£ = 0) 21% | 21% | 21% | 21% | 21% o
vigherisbetter| | NOiSymodel (t=1) | 24% | 24% | 24% | 24% | 24% mode connectivity is
CIFAR-10 Prune 88% | 85% | 83% | 82% | 81% NOT by chance: 1000
(VGG) Path connection (f = 0.1} | 1.1% | 0.8% | 1.5% | 3.3% | 2.5% :
Fine-tune 1.5% | 09% | 0.5% | 1.9% | 2.8% noisy models suffer
Backdoor Train from scratch 04% | 07% | 0.3% | 3.2% | 2.1% from low clean accuracy
Accuracy Noisy model (£ = 0) O7T% | 97% | 97% | 97% | 97% and high attack success
Noisy model (t = 1) 91% | 91% | 91% | 91% | 91%

Lower is better

Prune 43% | 49% | 81% | 79% | 82% rate




Adversarial Training and Benchmarks

Towards Deep Learning Models Resistant to Adversarial Theoretically Principled Trade-off between Robustness and Accuracy
Attacks

Hongyang Zhang* Yaodong Yu' Jiantao Jiao
ks , ks . dwi e CMU & TTIC University of Virginia UC Berkeley
Aleksander Ma‘dr}'r Aleksandar Makelov Lu ngSChI'I'll £ hongyanz@ cs.cmu.edu yy8ms@virginia.edu jiantao@eecs. berkeley.eduo
MIT MIT MIT ] ) ) )
madry@mit.edu amakelov@mit.edu ludwigs@mit.edu Eric P. Xing Laurent El Ghaoui Michael I. Jordan
e e, . . CMU & Petuum Inc. UC Berkeley UC Berkeley ,
Dimitris Tblprah Adrian Vladu epxing @cs.cmu.edu elghaoui @ berkeley.edu jordan @cs.berkeley.edu IC M L 18
MIT MIT ICLR’18
tsipras@mit.edu avladu@mit.edu

RoBUSTBENCH Leaderboards Paper FAQ Contribute Model Zoo g7

@ ROBUSTBENCH

A standardized benchmark for adversarial robustness

* Adversarial training: ming iy maxsan 5. 1<eloss(x; + 85,y ;5 0)

=1

* TRADES: ming X;_1yloss(x; + 6, y;;6) + 4 - maxgsan 1is,1<el05S(fo (xi), fo (x; + 6;); 0)

=1

* Use of unlabeled data or pretraining can improve adversarial robustness
* Adaptive attack and Auto attack; RobustBench
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HRS Training: Hierarchical Random Switching

* A randomness-driven training method that achieves 5X better
robustness-accuracy trade-off than SOTA

Base Model

— DDD."D DDD."D DDD".D_b " Defense Mean

HRS Model Channel C, % 0.4- Methods DES

) N W e
D D D D\ T eodl ] A D D D D 0.2 — Gaussian 6.176

(\ L : / e O’T" . Ty e o1 : g:t}sian Adv. Train 7.367
channels D D D."D ch;:}nels : : :.”_ chi:;A:lels D D D."D 0.0 . 0.1 0:; AdV'UT:'" = 2

Switching Block 1 Switching Block 2 Switching Block M Test Accuracy Drop
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https://www.google.com/url?q=https%3A%2F%2Fwww.ijcai.org%2Fproceedings%2F2019%2F0833.pdf&sa=D&sntz=1&usg=AFQjCNFr567GQM6zRf85jd0vRhIdje-9VA

SPROUT: Self-Progressing Robust Training

Minhao Cheng, Pin-Yu Chen, Sijia Liu, Shiyu Chang, Cho-Jui Hsieh, Payel Das. AAAI 2021

CAT: Customized Robust Training for
Improved Robustness

Minhao Cheng, Qi Lei, Pin-Yu Chen, Inderjit Dhillon, Cho-Jui Hsieh




SPROUT: Self-Progressing Robust Training

* Observation: static label smoothing during training improves
adversarial robustness

* Label smoothing: instead of model training on one-hot coded labeled
data samples {x;, y;}i=,, we train on {x;, ¥;}:-,, where

y=0-a)y+a-u, a€(0,1)
* In practice, u = %1 (i.e. uniform label smoothing)

* Pros: Attack-independent training, efficient
* Cons: Marginal robustness gain compared to adversarial training



Dirichlet Label Smoothing <M M

e Our proposed parameterized label technique
* Draw training label from a parameterized distribution:
y=(1—a)y+ a- Dirichlet(f)
 Self-progressing training with Dirichlet label smoothing:
mingmaxg Y.;—4 loss(x;, V;; 0, )
e Recall Adversarial Training [Madry ICLR’18]:
ming Yi—, maxs, yn_loss(x; + 6;,y; 5 6)



SPROUT = Dirichlet LS + Gaussian
Augmentation + Mixup -

* Dirichlet LS: ¥ = (1 — a)y + a - Dirichlet(f)

e Gaussian Augmentation: ¥ = x + N(0, o])

* Mixup of two data samples {x;, y;}, {x]-,yj}:
X=M;+(1—-Dx,y=4y; +(1—-Vy; , 1€ (0,1)

* Overall training objective: mingmaxg Y.;_, loss(%;,¥; ; 6, B|x;,y;)

* These three techniques are free of attack-generation

* We will show the robustness gains from these three methods are
complimentary



Algorithm 1 SPROUT algorithm

Input: Training dataset (X, Y"), Mixup parameter A\, Gaussian augmentation variance A2, model
learning rate v, Dirichlet label smoothing learning rate 5 and parameter «, cross entropy loss L
[nitial model #: random initialization (train from scratch) or pre-trained model checkpoint
Initial 3: random initialization
for epoch=1,..., N do
for minibatch Xp C X.Yp C Y do
Xp + N(Xp,A?)
Xmiz, Ymiz < MiXUp(XBe YB, \)
Ymiz ¢ Dirichlet(aY . + (1 — «)3)
ge < vﬁ£‘<4}irmir- mi H)
9B N v,@L(}{mi:ﬂ- Yz, 9)
0 < 60— 096
B B+89s
end for
end for

return ¢
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Substantial Robustness Improvement

Accuracy under attack

80 -

60 -

PGD attack stregth ¢

IBM Research Al
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Better Scalability and Comprehensive Performance

_C&W Acc ,_,..-(;&M}LACC f,___-.-(;&wx_ﬁAcc _C&W Acc
Scalibility \ Scalibility y \ ScaliP{ity \ Scalibflity \
/ 80% / 80% 80% 80%
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| p L inf Acc | <% L inf Acc | b L_inf Acc | 0% L_inf Acc
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Invalwe / Inva rmce | / Inva n\age / InvaWe
“—Cleah Acc “—Clean Acc ~~Clean Acc —Clean Acc
(a) Natural (b) Adversarial training (c) TRADES (d) SPROUT (ours)
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Customized Adversarial Training (CAT)

e Recall Adversarial Training [Madry ICLR’18]:
Ming Y=g MAxX(syn  |s.l1<el0SS(x; + 83, ¥; 5 6)

=1
* Not all samples should be treated equally in adversarial training
* Nor all their training labels

e Qur CAT formulation:

n
ming zi_lmax{5i}n 15;]|<e;L0SS(X; + 04,V ;5 0)

=1’



How does CAT work? Self-Progressing!

° ] n ~
Ming Yj—y MAX s |i5,)1<e,l0SS(x; + 63, Vi 5 0)

y; = (1 — c€;)y; + ce;Dirichlet(1)

The model prediction should be less confident for perturbed samples
x; + 0; that are further away from x;

1. Initialize €; withe; = 0

2. Ineach epoch, if x; + 0; still can be classified correctly as y; , increase €; (to

a maximum value) , otherwise decrease

3. Assign training label §; = (1 — c€;)y; + ce;Dirichlet(1) to x; + §;

4. Update model 8 with {x; + 6;, J;}

5. Repeat2to4

IBM Research Al



CIFAR-10 results

Methods Clean accuracy | PGD accuracy | C&W accuracy
Natural training 95.93% 0% 0%
Adversarial training (Madry et al., 2018) 87.30% 52.68% 50.73%
Dynamic adversarial training (Wang et al., 2019) 84.51% 55.03% 51.98%
TRADES (Zhang et al., 2019b) 84.22% 56.409%2°) 51.98%
Bilateral Adv Training (Wang, 2019) 91.00% 57.5%(*20) 56.29% (*20)
MMA (Ding et al., 2018) 84.36% 47.18% X
MART (Wang, 2020) 84.17% 58.56%(20) 54.58%
TAAT (Balaji et al., 2019) 91.34% 48.53%*19) 56.80%
CAT-CE (ours) 93.48% 73.38 % (+20) 61.88% (*20)
CAT-MIX (ours) 89.61% 73.16%*2% | 71.67 % *2°)

(b) Adv train

(a) Natural

——Z

0.10-0.10

IBM Research Al (¢) TRADES

7 0.05

—0.05

e 2.00
i .00
B 005"
"‘\\K .05
—0.10_0050 s 0.00

(d) CAT



Robustness Certification and Evaluation

Certificate for a data sample: For a given model 6 and a given data sample x,
provide a certificate € for a threat model (e.g. norm-based perturbation ||§||) such
that the model prediction of the data sample will not be altered as long as the
attack strength is no greater than € : pred(x|0) = pred(x + §|8) forany ||5|| < €

IBM Research Al



How do we evaluate adversarial robustness?

* Game-based approach * Verification-based approach
Specify a set of players (attacks and defenses) [ Attack-independent: does not use
QBenchmark the performance against each attacks for evaluation

attacker-defender pair dCan provide a robustness certificate

o The metric/rank could be exploited; for safety-critical or reliability-
No guarantee on unseen '; sensitive applications:
threats and future attacks x

@ Research Prediction Competition

Optimal verification is provably
difficult for large neural nets —
computationally impractical

NIPS 2017: Defense Against Adversarial Attack

Create an image classifier that is robust to adversarial attacks

Google Brain - 107 teams - 3 months ago

- Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks,

Guy Katz, Clark Barrett, David Dill, Kyle Julian, Mykel Kochenderfer, CAV 2017

IBM Research Al - Efficient Neural Network Robustness Certification with General Activation Functions,
Huan Zhang*, Tsui-Wei Weng*, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel, NIPS 2018




Verification: lower bounds on robustness

~
Amount of -
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Certified robustness
label

Lower bound on perturbation so
that any perturbations within

green region cannot cause
misclassification

- Shoe Shop
® N |abel

Vacuum Cleaner Attack

Shoe Shop Attack

Maximum Safe /
Perturbation

Bound

I
Lower |
I

—
~—_————~~\

Other Decision boundaries
\~ e

Decision\b%mda ry
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. DeepZ (Singh etal), Neurify (Wang etal) DeepPoly (Singh etal)
Ove rview NeurlPS ‘18 POPL ‘19
other teams — .
MIT-IBM A0 Al —
teams
ICLR “18 ICML ‘18 NeurlPS ‘18 AAAI ‘19 -
CLEVER (Weng etal) Fast-Lin (Weng etal) CROWN (Zhang etal) CNN-Cert

https://arxiv.org/abs/1801.10578 https://arxiv.org/abs/1804.09699 https://arxiv.org/abs/1811.00866 https://arxiv.org/abs/1811.12395
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Image Xy

Input

Perturbation
Size €

Threat model

Efficient certified bound with activation bounds

)

lx —xoll < €

Shoeshop

Ostrich

\ 4

Propagate

Bounds

Check if
robust

lCOT'T'eCt
> Utarget

* Robustness Certificate: Given a data input and a neural network model, under the specified threat model (e.g. L,, norm
ball) the top-1 prediction of the perturbed input will not be altered if the perturbation is smaller than &.¢rtified
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fficient certitied bound with activation bounds

Shoeshop
lliul
+&
lZJuZ
lx —x0ll < ¢ Ostrich
l3,ll3
Image X
Input
Perturbation | Propagate Check if lcorrect
Size ¢ Bounds robust > Utarget
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Input
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fficient certitied bound with activation bounds
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Input
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Perturbation
Size €

fficient certitied bound with activation bounds
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Bounds
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Input
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Perturbation
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fficient certitied bound with activation bounds
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Image Xy

Input

m—

lx — xoll < ¢

Perturbation
Size €

fficient certitied bound with activation bounds
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Image X

Input
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Perturbation
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fficient certitied bound with activation bounds
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CROWN: certification with general activation functions

 How do we efficiently find the activation bounds for certification?
w)

output A

X,+0,
Linear upper .

X,+6 e bound [ .-

270, &—X—~> 7/ /) \—-— ) \N N " &< AL ),  , 1T /.
L =" | f |
>
gl input

+ G
X3+03 @ 0" Linear lower

bound

* By applying adaptive linear upPer/Iowet bounds on the activation
functions, we can derive explicit expression of m-layer neural _
network output given the input is constrained in an L, -ball with radius
€. Thus a bisect e can obtain max certified lower bound.
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CNN-Cert represents bounds as convolutions

LS f(x)<U
f(x)
Fast-Lin(] L'=Ax+B,
U — Ax + BU
lx — xoll < ¢ U=Ayx+ By
a I

L=A +x+B,
U=AU*X+BU

+ is the convolution operator

N )

Xo= Original image
x= Perturbed image

CNN-Cert




CNN-Cert supports various building blocks
— X — —{BN|— _ﬁ y, > >

Conv Batch Norm Residual Pooling
Block
Pure CNN ResNet-18
LeNet

IBM Researc h Al



CNN-Cert finds a
certified region of
robustness

Certified
Region

Vacuum

CNN-Cert is

General
Activation

g

DD

CNN

CNN ‘o,

IBM Research Al

— K — — BN |—

Conv Batch Norm
Residual Pooling
Block
CNN-Cert
Fast-Lin/
#

CROWN




Robustness Verification against Semantic Attacks

Semantic Attack Examples

& &\ & &

Original input Rotation Color change Translation Occlusions Brightness & Contrast

- |-l {][]]]

Input Data Attack Parameter Perturbed Example  Original Network Layers Output

\ )

Apply p-norm based verifiers

00 -

Attack Semantic Perturbation m Output
Parameter Layers (SP-layers) Original Network Layers

| )

Apply p-norm based verifiers

= QOur Semantify-NN:

* Certificate of image rotation degree
against prediction changes

Network Certified Bounds (degrees) Attack (degrees)
Number of Implicit Splits SPL + Refine Grid Attack
I'implicit 5 implicit 10 implicit 100 implicit +

No explicit

No explicit

No explicit

explicit intervals of 0.5°

Experiment (II): Rotations

MNIST, MLP 2x 1024
MNIST, MLP 2x 1024 [, adv
MNIST, CNN LeNet

CIFAR, MLP 5 x 2048
CIFAR, CNN 5 x 10

GTSRB, MLP 4 x 256

0.627
1.376
0.171
0.006
0.008
0.041

1.505
2.253
0.397
0.016
0.021
0.104

2.515
2.866
0.652
0.033
0.042
0.206

46.24
45.49
43.33
14.81
10.65
31.53

51.42
46.02
48.00
37.53
30.81
3343
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CLEVER: a tale of two approaches

 An attack-independent, model-agnhostic
robustness metric that is efficient to
compute

* Derived from theoretical robustness
analysis for verification of neural
networks: Cross Lipschitz Extreme Value
for nEtwork Robustness

e Use of extreme value theory for efficient
estimation of minimum distortion

 Scalable to large neural networks

* Open-source codes:
https://github.com/IBM/CLEVER-Robustness-Score

IBM Research Al
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CLEVER way for Adversarial Robustness Evaluation

An attack-independent, model-agnostic robustness metric that is efficient to compute

Ostrich shoe shop vacuum | -~

ﬂ ﬂ E A A = Minimum distortion =~ CLEVER score
Xo Xq Xq'

Before-After robustness comparison

* Will my model become more

-

. adversarial |\ \ Decision boundary 3
robust if | do/use X?
- Decision boundary 2 o
Decision boundary 1 ' L, space

Other use cases
Same set of * Characterize the behaviors and

data for properties of adversarial examples
robustness .
o lation l do/use X .“ ‘ -“ * Hyperparameter selection for
adversarial attacks and defenses

CLEVER * Reward-driven model robustness

Modified -
model score Improvement
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http://bigcheck.mybluemix.net

1BM Research Al

Examples of CLEVER s

Attack imaginary banks' Al check image
processing systems by distorting check digits
¢ C L EV E R e n a b I e S ro b u St n ess and learn how IBM is working on mechanisms

for judging the robustness of such systems.

comparison between different e et s it o
AThreat models e e
(A Datasets

I Neural network architectures

Congratulations, you earned $500 more than your original check amount!

JDefense mechanisms st

5 0 9 8 6 w
Lowest

 p=x~ Hl -2 1 CLEVER

MNIST-MLP ‘] q q 4] q score

MNIST-C 0.8 13691 16036 10457 15344 19969
MNIST-DD o ®
MNST-BReLU f—_. | £ 0.6 |
CIFAR-MLp —————— O b i vl - g
CIFAR-CNN r~y 04 4 6 | 4 6 | $961
CIFAR-DD
S ———— Wi
Inceprion e ——— 0 | | aamiMore

Resnat

] For more information on the of Neural An Value Theory
MobileNet il'll:tptiﬂn resnet mﬂhilﬂmt Approach visit the blog or view the paper.
' ' : - : IBM Research Al ead Blog Pos o Paper
S S ECW HS50 ®100 =250 m500

percantage (%)


http://bigcheck.mybluemix.net/

Take-aways

* Adversarial robustness is a new Al standard toward trustworthy ML

JRobustness does not come for free: adversarial examples exist in digital space, physical world, and
different domains

High accuracy # Good robustness
JArms race: adversary-aware Al v.s. Al for adversary

* How to evaluate and improve model robustness?

dVarious attack threat models and taxonomy H uman
Wincorporate domain knowledge, attack-agnostic defense

Scalable and efficient robust training & verification O Robustness
e Adversarial machine learning beyond attacks and defenses

dModel reprogramming AI Data

* Join us for the exciting journey!
e Twitter: @pinyuchenTW

IBM Research Al



Model -
agnostic

Practical

Efficiency/Maximal
utility/Compatibility

Penetration Testing

Attack

(Bug Finding)

Defense
(Model Hardening)

Verification
(Model Certificate)

Applications to Al
(Model Boosting)

Roadmap toward Holistic Adversarial Robustness

e In-house sensitivity and reliability tests for developed models
* Generate prediction-evasive examples (per user constraints)
e Customize to model deployment conditions (e.g. cloud APlIs)

¢ Detecting and mitigating potential adversarial threats
¢ Plug-and-play model patching for a given model
e Landscape exploration: model fix and cleaning

* This model is certified to be attack-proof up to a certain level
e Quantifiable metric for certified robustness
e Al standards, governance, and law regulation

¢ Data augmentation
* Model reprogramming: data-efficient transfer learning
e Model watermarking



Online Resources for Adversarial Robustness

e J. Z. Kolter and A. Madry: Adversarial Robustness - Theory and Practice
(NeurlPS 2018 Tutorlal)

. _I|3_|n -Yu IC)hen Adversarial Robustness of Deep Learning Models (ECCV 2020
utoria

* Pin-Yu Chen and Sijia Liu: Zeroth Order Optimization: Theory and
Applications to Deep Learning (CVPR 2020 Tutorial)

* Pin-Yu Chen and Sayak Paul: Practical Adversarial Robustness in Deep
Learning: Problems and Solutions (CVPR 2021 Tutorial)

r,

il
( \\

L—J

Adversarial Robustness Toolbox (ART v0.10.0)

,é % Foolbox
‘hans
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https://www.youtube.com/watch?v=TwP-gKBQyic
https://www.youtube.com/watch?v=-QbKyOuEoxc
https://www.youtube.com/watch?v=17AL1mS3uxw
https://sites.google.com/view/par-2021

Sample Surveys for Adversarial Robustness

Wild Patterns: Ten Years After the Rise of ON EVALUATING ADVERSARIAL ROBUSTNESS
Adversarial Machine Learning

Battista Biggio®"™*, Fabio Roli*"

“Department of Electrical and Electronic Engineering, University of Cagliari, Italy
b Pluribus One, Cagliari, Italy
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