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#ImageNet Generation
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https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c

https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c


ImageNet Challenges

IBM Research AI

https://towardsdatascience.com/transfer-learning-in-tensorflow-9e4f7eae3bb4

https://towardsdatascience.com/transfer-learning-in-tensorflow-9e4f7eae3bb4


The Deep Learning Revolution. What’s next?

IBM Research AI

Geoffrey Hinton

What’s
Next?

http://image-net.org/challenges/talks_2017/imagenet_ilsvrc2017_v1.0.pdf https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/



What happens when you do well on ImageNet?

IBM Research AI



The gap between AI development and deployment

How we develop AI How we deploy AI



AI revolution is coming, 
but Are We Prepared ?

❑ According to a recent Gartner report, 30% of
cyberattacks by 2022 will involve data
poisoning, model theft or adversarial examples.

❑ However, industry is underprepared. In a
survey of 28 organizations spanning small as
well as large organizations, 25 organizations did
not know how to secure their AI systems.



What is wrong with this AI model?
- This model is one of the BEST image classifier using neural networks

- Images and neural network models are NOT the only victims

IBM Research AI

EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples, P.-Y. Chen*, Y. Sharma*, H. Zhang, J. Yi, and C-.J. Hsieh, AAAI 2018

The Great Adversarial Examples



Accuracy ≠ Adversarial Robustness
• Solely pursuing for high-accuracy AI model may get us in trouble…

IBM Research AI
Is Robustness the Cost of Accuracy? A Comprehensive Study on the Robustness of 18 Deep Image Classification Models, Dong Su*, Huan Zhang*, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao, ECCV 2018

Our benchmark 
on 18 ImageNet 
models reveals 
a tradeoff in 
accuracy and 
robustnessRobustness

Accuracy



Adversarial examples: the evil doublegangers
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source: Google Images



Why adversarial (worst-case) robustness matters?
➢ Prevent prediction-evasive manipulation on deployed models

Build trust in AI: address inconsistent decision making                                 
between humans and machines & misinformation

Assess negative impacts in high-stakes, safety-critical tasks 

Understand limitation in current machine learning methods

Prevent loss in revenue and reputation

Ensure safe and responsible use in AI

Adversarial 
T-shirt



AI technology: Jewel of the Crown 

Adversarial ML Threat Matrix

https://github.com/mitre/advmlthreatmatrix

AI Incidence Database

https://incidentdatabase.ai

AI

System

IBM Research AI

“According to a Gartner report, through 

2022, 30% of all AI cyberattacks will 

leverage training-data poisoning, model 

theft, or adversarial samples to attack 

machine learning-powered systems.”

https://techhq.com/2020/11/the-looming-
threat-of-ai-powered-cyberattacks/

https://github.com/mitre/advmlthreatmatrix
https://incidentdatabase.ai/


Trustworthy AI: Beyond Accuracy

Fairness Adversarial Robustness

IBM Research AI

(Hardt, 2017) https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html

https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html


Our portfolio in adversarial robustness research
• 40+ papers at top AI/ML 

conferences in 2018-2021 
(NeurIPS, ICML, AAAI, ICLR, IJCAI, ACL, ECCV, ICCV, 
CVPR, ICASSP, …)

• Open-Source Library, Tutorials

IBM Research AI

Adversarial Robustness

Attack Defense
Evaluation 

& 
Certification

Novel
Applications

https://www.ucc.ie/en/cirtl/newsandevents/cirtl-seminar-the-assessment-arms-race-and-its-fallout-the-case-for-slow-scholarship-may-14th.html

https://www.ucc.ie/en/cirtl/newsandevents/cirtl-seminar-the-assessment-arms-race-and-its-fallout-the-case-for-slow-scholarship-may-14th.html


Why do researchers and society care? Trust!
Whenever there is a neural net, there is a way to adversarial examples 

IBM Research AI



Growing concerns about safety-critical settings with AI

IBM Research AISource: Paishun Ting

Autonomous cars that deploy AI model for traffic signs recognition



But with adversarial examples…

IBM Research AISource: Paishun Ting



Adversarial examples in different domains
• Images

• Videos

• Texts 

• Speech/Audio

• Data analysis

• Electronic health 
records 

• Malware

• Online social network

• and many others

IBM Research AI

AI model



Adversarial examples in image captioning
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Show and Tell: Lessons Learned from the 2015 MSCOCO Image Captioning Challenge, Oriol Vinyals, AlexanderToshev, Samy Bengio, and Dumitru Erhan, T-PAMI 2017
Attacking Visual Language Grounding with Adversarial Examples: A Case Study on Neural Image Captioning, Hongge Chen*, Huan Zhang*, Pin-Yu Chen, Jinfeng Yi, and Cho-Jui Hsieh, ACL 2018

AI model
Input: image Output: caption



Adversarial examples in speech recognition

IBM Research AI
Audio Adversarial Examples: Targeted Attacks on Speech-to-Text, Nicholas Carlini and David Wagner, Deep Learning and Security Workshop 2018

AI model

without the dataset the article is useless

What did your hear?



Adversarial examples in speech recognition

IBM Research AI
Audio Adversarial Examples: Targeted Attacks on Speech-to-Text, Nicholas Carlini and David Wagner, Deep Learning and Security Workshop 2018

AI model

without the dataset the article is useless

What did your hear?

okay google browse to evil.com



Data Model Analysis

Adversarial examples in data regression
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Is Ordered Weighted $\ell_1$ Regularized Regression Robust to Adversarial Perturbation? A Case Study on OSCAR, Pin-Yu Chen*, Bhanukiran Vinzamuri*, and Sijia Liu, GlobalSIP 2018

Factor identification



Adversarial examples in text classification
• Paraphrasing attack
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Qi Lei*, Lingfei Wu*, Pin-Yu Chen, Alexandros G. Dimakis, Inderjit S. Dhillon, and Michael Witbrock, “Discrete Adversarial Attacks and Submodular Optimization with Applications to Text 
Classification,” The Conference on Systems and Machine Learning (SysML) 2019 (*equal contribution)



Adversarial examples in seq-to-seq models
• One-word replacement 

attack for text 
summarization

• Targeted phrase attack 
for text summarization. 
Target: “police arrest”

IBM Research AI

Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan Zhang, and Cho-Jui Hsieh, “Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Adversarial Examples,” AAAI Conference on Artificial 
Intelligence (AAAI), 2020



Adversarial examples in graph-neural networks
• Node feature perturbation

• Edge perturbation

IBM Research AI

Kaidi Xu, Sijia Liu, Pin-Yu Chen, Mengshu Sun, Caiwen Ding, Bhavya Kailkhura, and Xue Lin, “Towards an Efficient and General Framework of Robust Training for 
Graph Neural Networks,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020
Kaidi Xu*, Hongge Chen*, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin, “Topology Attack and Defense for Graph Neural Networks: An Optimization 
Perspective,” International Joint Conference on Artificial Intelligence (IJCAI), 2019 (*equal contribution)
Zügner, Daniel, Amir Akbarnejad, and Stephan Günnemann. “Adversarial attacks on neural networks for graph data." Proceedings of the 24th ACM SIGKDD International Conference on 
Knowledge Discovery & Data Mining (KDD), 2018.

[Zugner et al 2018] [Xu et al 2019]



Adversarial examples in deep reinforcement learning
• Observation (state) perturbation for policy/reward degradation

IBM Research AI
Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen, Yi Ouyang, Chin-Hui Lee, and Xiaoli Ma, “Enhanced Adversarial Strategically-Timed Attacks against Deep Reinforcement Learning,” IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), 2020

Credit: Chao-Han Huck Yang@GIT

Deep Reinforcement 
Learning Agent

Sequential Inputs

Frame under Attack

“Up”, “Right”, “Up + Right”

Output Actions

“Left”

Output Action at time = t



Adversarial examples in physical world
• 3D-printed adversarial turtle

IBM Research AI

• Real-time traffic sign detector

• Adversarial eye glasses• Adversarial patch



Adversarial examples in physical world (2)

• 3D-printed adversarial turtle

IBM Research AI



Adversarial T-Shirt!

IBM Research AI
Adversarial T-shirt! Evading Person Detectors in A Physical World. Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu Sun, Hongge Chen, Pin-Yu Chen, Yanzhi Wang, Xue Lin, ECCV 2020



Adversarial Attacks: 
full transparency v.s. practicality

IBM Research AI



Holistic View of Adversarial Robustness

gData Model Inference

Training Phase Test Phase

Attack Category / Attacker’s reach Data Model / Training Method Inference

Poisoning Attack [learning] X X*

Backdoor Attack [learning] X

Evasion Attack (Adversarial Example) [learning] X* X

Extraction Attack (Model Stealing, Membership inference) X

Model Injection [AI governance] X* X

*No access to model internal information in the black-box attack setting

AI/ML 
system

AI/ML 
system



Inference-Phase (test-time) Attack 
Fixed model; Manipulate data inputs

IBM Research AI



Taxonomy of Evasion Attacks
• White-box attack

❑Standard white-box
❑Adaptive white-box (defense-aware)

• Black-box (query-based) attack
❑Soft-label attack – Bagel(60%), Piano(20%),…
❑Hard-label (decision-only) attack - Bagel 

• Transfer (black-box) attack

• Gray-box attack (all other types)

IBM Research AI

AI/ML 
system

Piano

PianoAI/ML 
system

AI/ML 
system

Piano PianoAI/ML 
system

Target model



How to generate adversarial examples?
• The “white-box” attack – transparency to adversary 

• Applications of neural networks

❑ Image processing and understanding

❑Object detection/classification

❑Chatbot, Q&A

❑Machine translation

❑Speech recognition

❑Game playing

❑Robotics

❑Bioinformatics

❑Creativity 

❑Drug discovery

❑Reasoning

❑And still a long list…

2% (traffic light)

90% (French bulldog)

3% (basketball)

5% (bagel)

neural network outcome (prediction)

input task trainable neurons; 
usually large and deep

IBM Research AI



Use the Great Back-Propagation!
• The “white-box” attack – leverage input gradients toward misclassification

• Applications of neural networks

❑ Image processing and understanding

❑Object detection/classification

❑Chatbot, Q&A

❑Machine translation

❑Speech recognition

❑Game playing

❑Robotics

❑Bioinformatics

❑Creativity 

❑Drug discovery

❑Reasoning

❑And still a long list…

IBM Research AI

2% (traffic light)

90% (French bulldog)

3% (basketball)

5% (bagel)

neural network outcome (prediction)

input task trainable neurons; 
usually large and deep

IBM Research AI



Attack formulation

• Threat model: perturbation 𝛿 confined to some distance metric / semantic space relative to a 
data input 𝑥0 (bagel image) with label 𝑡0 (bagel)

• (Untargeted) Attack formulation: Minimize𝛿 Distance(𝑥0, 𝑥0 + 𝛿) 

such that Prediction(𝑥0) ≠ Prediction(𝑥0+ 𝛿)

• Alternatively, Minimize Distance(𝑥0, 𝑥0 + 𝛿)+𝜆 ∙ Loss(𝑥0, 𝛿)

• Or, Minimize Loss(𝑥0, 𝛿) such that Distance(𝑥0, 𝑥0 + 𝛿) ≤ 𝜀

• Some commonly used Distance metric: 𝐿𝑝 norm ball centered on 𝑥0
• 𝛿 ∞ : maximal perturbation in each input dimension  (FGSM, Iterative FGSM, CW-Linf)
• 𝛿 2 𝑜𝑟 𝛿 2

2 : sum of squared differences of each input dimension (CW-L2)
• 𝛿 1 : total variation, sum of difference in absolute value (EAD)
• 𝛿 0 : number of modified dimensions (one-pixel attack, structured attack)
• Mixed norms & structured attack (check out our structured attack paper)

• Some commonly used Loss function: cross entropy, contrastive loss (CW loss)

• Generic formulation and can be extended to different tasks with designed Loss and Distance

IBM Research AI

EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples, P.-Y. Chen*, Y. Sharma*, H. Zhang, J. Yi, and C-.J. Hsieh, AAAI 2018
Structured Adversarial Attack: Towards General Implementation and Better Interpretability. Kaidi Xu* Sijia Liu*, Pu Zhao, Pin-Yu Chen, Huan Zhang, Quanfu Fan, Deniz Erdogmus, Yanzhi Wang, Xue Lin, ICLR 2019

Targeted attack: 
Prediction(𝑥0+ 𝛿)= 𝑡, 𝑡 ≠ 𝑡0

Projected Gradient Descent (PGD) 
attack [Madry et al 2018]

Carlini&Wagner (CW) attack 



Target Class

IBM Research AI

EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples, P.-Y. Chen*, Y. Sharma*, H. Zhang, J. Yi, and C-.J. Hsieh, AAAI 2018

MNIST CIFAR-10

ImageNet

O
rigin

al C
lass



“Universal” Attack

• Beyond perturbation to a single data sample:

• Universal perturbation to different 
• data samples

• models

• input transformations

• ensemble methods 

• Better problem formulation gives stronger attack
• Min_{δ} Max_{𝑖} 𝐿𝑜𝑠𝑠𝑖(δ) outruns Min_{δ} σ𝑖 𝐿𝑜𝑠𝑠𝑖 (δ)

•

IBM Research AI



Are white-box attacks “practical”?
• If the target model is not transparent to an attacker (e.g. Online APIs), back-

propagation will not be feasible. Therefore, gradient-based attack would be in vain.

• Can one still generate adversarial examples given limited information?

IBM Research AI



How about attacking AI/ML systems with Limited Knowledge?

• Typical scenario for deployed AI/ML systems & AI/ML as a service 

• A practical “black-box” attack – only observe input-output responses;  zero 
knowledge about the model, training data… 

• Input gradient is infeasible and inaccessible – Back-Prop doesn’t work

• Now you might think your system is robust to adversarial examples….

IBM Research AI

AI/ML 
system 
𝐹(∙)

Input

Prediction



Attacking AI/ML systems with Limited Access: Our ZOO Attack

• Now you might think your system is robust to adversarial examples….

• Key technique: gradient estimation from system outputs instead of back-prop

IBM Research AI

AI/ML 
system 
𝐹(∙)

Input

Prediction

ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models, P.-Y. Chen*, H. Zhang*, Y. Sharma, J. Yi, and C.-J. Hsieh, AI-Security 2017

Gradient 𝑔𝑖 ≔
𝜕𝑙𝑜𝑠𝑠𝐹(𝑥)

𝜕𝑥𝑖
≈

𝐿𝑜𝑠𝑠𝐹 𝑥+𝛽𝐞𝑖 −𝐿𝑜𝑠𝑠𝐹 𝑥−𝛽𝐞𝑖

2𝛽

Adversarial example 𝑥𝑎𝑑𝑣 = 𝑥 − 𝜂 ⋅ ො𝑔±𝛽 ±𝐹 x + 𝛽𝐞𝑖



IBM Research AI

black-box attack on Google Cloud Vision 
[llyas et al. ICML’18]

Andrew Ilyas, Logan Engstrom, Anish Athalye, Jessy Lin. Black-box Adversarial Attacks with Limited Queries and Information. ICML 2018



AutoZOOM: Query Redemptions

IBM Research AI
AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks. Chun-Chen Tu*, Paishun Ting*, Pin-Yu Chen*, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, and Shin-Ming Cheng. AAAI 2019

Dimension reduction 
+ query-efficient 
gradient estimation



Targeted attack on ImageNet (Inception-v3)

• AutoZOOM saves MILLIONS of queries when compared to ZOO Attack

• Exploration & Exploitation: use few queries to find a successful 
perturbation, and use more queries to refine its distortion afterwards

IBM Research AI
AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks. Chun-Chen Tu*, Paishun Ting*, Pin-Yu Chen*, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, and Shin-Ming Cheng. AAAI 2019



Is Label-Only Black-box Attack Possible? Yes!

Query-Efficient Hard-label Black-box Attack: An Optimization-based Approach. Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh, ICLR 2019
Black-box Adversarial Attacks with Limited Queries and Information, Andrew Ilyas*, Logan Engstrom*, Anish Athalye*, and Jessy Lin*. ICML 2018
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models. Wieland Brendel, Jonas Rauber, and Matthias Bethge. AAAI 2019
Sign-OPT: A Query-Efficient Hard-label Adversarial Attack. Minhao Cheng*, Simranjit Singh*, Patrick H. Chen, Pin-Yu Chen, Sijia Liu, and Cho-Jui Hsieh. ICLR 2020

IBM Research AI

Classified as a “car”



Training-Phase Attack
Manipulate training data and/or training method

IBM Research AI



Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal, Viswanath, Haitao Zheng, Ben Y. Zhao. Neural Cleanse: Identifying and Mitigating Backdoor 
Attacks in Neural Networks. IEEE Security and Privacy, 2019Backdoor 

Attack

Distributed 
Attack on 
Federated 
Learning

Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. DBA: Distributed Backdoor Attacks against Federated Learning. ICLR 2020

• Distributed backdoor attack is more 
effective, stealthier, and more resilient 
against “robust” aggregation

Tianyu Gu, Brendan Dolan-Gavitt, Siddharth Garg. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. IEEE Access 2019

IBM Research AI



More on Distributed Backdoor Attacks

• Byzantine setting

IBM Research AI



Why do we care? Model Sanitization!

• I have an amazing ImageNet model which achieves 95% top-1 
accuracy, and I make it publicly available by releasing the network 
architecture and trained model weights. Care to use it for your task?

➢Tempting … but MLSS talk makes me well educated. How do I know 
your model does not have any backdoor?

✓Sanitize the model before using it (aka wear mask before you go out)

AI/ML 
system

Yes! Using models 
from untrusted 
sources has risks 
of infection too!

IBM Research AI



Applications and Extensions 
based on Adversarial Attacks

Zeroth Order Optimization meets Black-box Attack

IBM Research AI



Black-box attack generation: an application of ZO optimization

• A master problem: min
𝒙∈𝑅𝑑

𝐹 𝒙 = σ𝑖=1
𝑛 𝑓𝑖(𝒙)

Zeroth-order (ZO) optimization

ZO uses gradient estimate ෡∇𝑓𝑖(𝒙)
via function queries

𝒙𝑘 = 𝒙𝑘−1 − 𝛼෡∇𝑓𝑖(𝒙𝒌−𝟏), 𝑘 = 1,2,… , 𝑇

random gradient estimate :෡∇𝑓𝑖(𝒙) =
𝑓𝑖 𝒙+𝛽𝒖 −𝑓𝑖 𝒙

𝛽
𝒖

First-order optimization
e.g., stochastic gradient descent (SGD)

SGD uses stochastic gradient ∇𝑓𝑖(𝒙)

𝒙𝑘 = 𝒙𝑘−1 − 𝛼∇𝑓𝑖(𝒙𝑘−1), 𝑘 = 1,2,… , 𝑇

unbiased: 𝐸𝑖 ∇𝑓𝑖 𝒙 = ∇𝐹(𝒙)

White-box attack generation

𝛼 > 0: step size

biased: 𝐸𝑖,𝑢 ෡∇𝑓𝑖(𝒙) ≠ ∇𝐹(𝒙)

𝑓𝑖: black-box/white-box loss 
function at sample i

Black-box attack generation

Non-trivial

IBM Research AI



Zeroth-Order (ZO) Optimization

SGD (first order) ZO-SGD

Convergence rate 𝐸 ∇𝐹 𝒙𝑇 2
2 = 𝑂(1/ 𝑇) Convergence rate 𝐸 ∇𝐹 𝒙𝑇 2

2 = 𝑂( 𝑑/ 𝑇)
[Duchi, et al., T-IT’15]

𝒙0 𝒙0

Question: Better gradient estimate & ZO 
method with better convergence rate?

T is # of iterations d is # of variables

IBM Research AI



(Incomplete) Summary of Black-box Attack Methods

• Transfer attack from white-box surrogate model [Papernot et. al.] (soft label)

• Zeroth-order optimization (ZO) based attack (feat. Convergence Guarantees)
• ZO attack with gradient estimation [Chen et. al. AI Sec 2017] (soft label)
• ZO-SVRG [Liu et. al. NeuRIPS 2018] (soft label)
• ZO-Natural Evolution Strategy [Ilyas et. al. ICML 2018] (soft/hard label)
• Input dimension reduction + ZO attack [Chen et. al. AAAI 2019] (soft label)
• ZO-signSGD [Liu et. al. ICLR 2019] (soft label)
• ZO-Natural Gradient Descent [Zhao et. al. AAAI 2019] (soft/hard label)
• ZO-ADMM [Zhao et. al. ICCL 2019] (soft/hard label)
• ZO-ADAM [Chen et. al. NeuRIPS 2019] (soft label)
• ZO hard-label attack [Cheng et. al. ICLR 2019] (hard label)
• Sign-OPT [Cheng et. al. ICLR 2020] (hard label)

• Bandit attack [Ilyas et. al. ICLR 2019] (soft label)

• Decision-based attack [Brendel et. al. ICLR 2018] (hard label)

• A lot more …
IBM Research AI

soft label = score based.    hard label = decision based.



Survey paper: Liu, Chen, et al., “A Primer on Zeroth-Order Optimization in Signal 
Processing and Machine Learning”, IEEE Signal Processing Magazine 
https://arxiv.org/pdf/2006.06224.pdf

https://arxiv.org/pdf/2006.06224.pdf


Applications and Extensions 
based on Adversarial Attacks

Adversarial Examples meets (Machine) Interpretation

Model Watermarking and Data Privacy

IBM Research AI



Generating Contrastive Explanations
• Steve is the tall guy with long hair who does 

not wear glasses

• Pertinent Positive (PP): minimally sufficient to be 
present to support the original classification

• Pertinent Negative (PN): necessarily absent to prevent 
changing the classification of the original image 

IBM Research AI

Amit Dhurandhar*, Pin-Yu Chen*, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shanmugam, and Payel Das, “Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives” NeurIPS 2018
Ronny Luss*, Pin-Yu Chen*, Amit Dhurandhar*, Prasanna Sattigeri*, Karthikeyan Shanmugam, and Chun-Chen Tu, “Generating Contrastive Explanations with Monotonic Attribute Functions” arxiv



Model Watermark Embedding and Extraction

• Embed N-bit vector to a subset of dimension in input gradients

• Remote and black-box watermark extraction using gradient estimation

IBM Research AI

Omid Aramoon, Pin-Yu Chen, and Gang Qu. Don’t Forget to Sign the Gradients! MLSyS 2021



Data Cloaking for Privacy

IBM Research AI
https://ai.facebook.com/blog/using-radioactive-
data-to-detect-if-a-data-set-was-used-for-training/

https://sandlab.cs.uchicago.edu/fawkes/



More Interesting Applications

IBM Research AI



Q&A for Part I

IBM Research AI



Model Reprogramming: 
Adversarial ML for Good

IBM Research AI



Transfer Learning via Fine-Tuning



Better source 
model

Better 
representation 

learning

Better transfer 
learning

• Are we able to do transfer learning on the “best” model? 
➢ Not really, especially when they are black-box models

Transfer Learning without Knowing?



Black-box Adversarial Reprogramming (BAR)

• Reprogram powerful but black-box models for transfer learning (w/o 
fine-tuning) – teach old dog new tricks

• Appealing for cross-domain and data-limited transfer learning 



Black-box Adversarial Reprogramming (BAR): 
Data-Efficient Transfer Learning

Yun-Yun Tsai, Pin-Yu Chen, Tsung-Yi Ho. Transfer Learning without Knowing: Reprogramming Black-box Machine Learning Models with Scarce Data and Limited 
Resources. ICML 2020

2

1

3

Credit: Yun-Yun Tsai@NTHU



Problem Formulation

• Given a black-box model: 

• Given the set of data from the target domain by: 

• Output: Optimal adversarial 

program with parameters 𝑊.

𝐹 ∶ 𝒳 → ℝ𝐾 ,

where 𝒳 ∈ −1, 1 𝑑 and 𝐹 𝓍 = 𝐹1 𝑥 , 𝐹2 𝑥 ,… , 𝐹𝐾 𝑥 ∈ ℝ𝐾

{𝑇𝑖}𝑖=1
𝑛 , where 𝑇𝑖 ∈ [−1, 1]𝑑

′

and 𝑑′ < 𝑑

Elsayed, Gamaleldin F., Ian Goodfellow, and Jascha Sohl-Dickstein. 

"Adversarial reprogramming of neural networks.“ ICLR 2019



Adversarial Program Function

• The transformed data sample for BAR is defined as: 

Trainable parameters: 
𝑊 ∈ ℝ𝑑

෩𝑋𝑖 ={𝑇𝑖}𝑝𝑎𝑑𝑑𝑖𝑛𝑔 + 𝑃, and 𝑃 = 𝑡𝑎𝑛ℎ 𝑊⨀𝑀

1

2 31

Gamaleldin F. Elsayed, Ian Goodfellow, Jascha Sohl-Dickstein. Adversarial Reprogramming of Neural Networks. ICLR 2019

Universal trainable 
perturbation (aka Trigger!)

IBM Research AI



Multi-label Mapping (Random)

• We use the notation ℎ𝑗 (∙) to denote 𝑚 𝑡𝑜 1 mapping function. For 
example,

• We find that multiple-source-labels to one target-label mapping 
better than one-to-one label mapping.

ℎ𝐴𝑆𝐷 𝐹 𝑋 =
𝐹𝑇𝑒𝑛𝑐ℎ 𝑋 + 𝐹𝐺𝑜𝑙𝑑𝑒𝑛𝑓𝑖𝑠ℎ 𝑋 + 𝐹𝐻𝑎𝑚𝑚𝑒𝑟ℎ𝑒𝑎𝑑 𝑋

3

2 31

2



Training Loss Function

• We aim to maximize the probability of

• We use focal loss empirically as it can further improve the 
performance of AR/BAR over cross entropy.

• ZO optimization for learning 𝑊 in BAR :

𝐿𝑓𝑜𝑐𝑎𝑙(𝑝𝑡) = −𝜔 1 − 𝑝𝑡
𝛾𝑙𝑜𝑔(𝑝𝑡)

𝑝𝑡 = 𝑃 ℎ𝑗 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 𝑋𝑡𝑎𝑟𝑔𝑒𝑡)

Lin et al. Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision, pp. 2980–2988, 2017.

2 31

3

𝑊𝑡+1 = 𝑊𝑡 − 𝛼𝑡 ∙ ෡∇𝐿 𝑊𝑡



Experimental Results

• Autism Spectrum Disorder Classification (2 classes)
• We use Autism Brain Imaging Data Exchange (ABIDE) database.

• It contains 503 individuals suffering from ASD and 531 non-ASD samples.

• The data sample is a 200×200 brain-regional correlation graph of fMRI measurements.

Eslami et al. Asd-diagnet: A hybrid learning approach for detection of autism spectrum disorder using fmri data. 
Frontiers in Neuroinformatics, 13, Nov 2019.



Experimental Results

• Melanoma Detection (7 classes)
• The target-domain dataset is from the International Skin Imaging 

Collaboration (ISIC) dataset.

• The performance of SOTA is 78.65%, which uses specifically designed data 
augmentation with finetuning on Densenet.

Li, et al. Skin lesion analysis towards melanoma detection via end-to-end deep learning of convolutional neural networks. 
arXiv preprint arXiv:1807.08332, 2018. 



Experimental Results

• Reprogramming Microsoft Custom Vision API:
• This API allows user uploading labeled datasets and training an ML 

model for prediction. 

• The model is unknown to end user.

• We use this API and train a traffic sign image recognition model (43 
classes) using GTSRB dataset. 

IBM Research AI



V2S: Reprogramming Human Acoustic Models 
for (Univariate) Time-Series Classification

IBM Research AI
Chao-Han Huck Yang, Yun-Yun Tsai and Pin-Yu Chen “Voice2Series: 
Reprogramming Acoustic Models for Time Series Classification,” ICML 2021

https://arxiv.org/abs/2106.09296


V2S Algorithm and Implementation

IBM Research AI



V2S Outperforms SOTA on 20/30 UCR Datasets!



Why and When Model Reprogramming Works?
(No, it’s not about knowledge transfer)

IBM Research AI



Adversarial Defenses: 
empirically v.s. provable robustness

IBM Research AI



Learning to classify is all about drawing a line

Labeled 
datasets

IBM Research AI

Source: Paishun Ting

Decision boundary w/ 100% accuracy

Decision boundary w/ <100% accuracy

Classified as 

Classified as 



Connecting adversarial examples to model robustness

IBM Research AI

Classified as 

Classified as 

Source:Paishun-Ting, Tsui-Wei Weng

• Robustness evaluation: how close a refence 
input is to the (closest) decision boundary



Labeled 
datasets

Learning a robust model is NOT easy

• We still don’t fully understand how neural 
nets learn to predict

❑ calling for interpretable AI

• Training data could be noisy and biased

❑ calling for robust and fair AI

• Neural network architecture could be 
redundant and leading to vulnerable spots

❑ calling for efficient and secure AI model

• Need for human-like machine perception and 
understanding 

❑ calling for bio-inspired AI model

• Attacks can also benefit and improve upon 
the progress in AI 

❑ calling for attack-independent evaluation

IBM Research AI



Attack and Defense Arms Race

IBM Research AI



“Natural Adversarial Examples”

IBM Research AI

True label

Incorrect Prediction label

Dan Hendrycks, et al., Natural Adversarial Examples, arXiv, 2019 



Where we are and where we go
• A defense is robust only when it is known to an adversary but still cannot break 

it  (defender makes the first move and is transparent to an attacker)

1. Data augmentation with adversarial examples: helps but did not solve the problem

2. Standard training to robust training (adversarial training): 
• Minimize _{model parameters} Loss(data, labels, model)
• Minimize_{model parameters} Maximize_{attack}  Loss(manipulated(data), labels, model)

• Effective, but not scalable, significant drop in test accuracy

3. Input transformation, correction & anomaly detection: many are bypassed by 
advanced attacks

4. New learning model and training loss: slow progress

5. Model with diversity: model ensembles & model with randomness

6. Domain and task-specific defenses: case-by-case, not automated

7. Combination of all the effective methods: system design 
IBM Research AI



Defenses: Detection and Patching

IBM Research AI

Trained neural network
- Large models with “good”   
test performance
- Handful of clean data for 
inspection

Detection

No Trojan 
found

Patching

Car inspection Car fix Car wash



Case study: audio adversarial examples

IBM Research AI

without the dataset the article is useless

What did your hear?

okay google browse to evil.com



Mitigating audio adversarial attacks

• Leveraging temporal dependency (TD) in audio data to combat audio 
adversarial examples in automatic speech recognition systems

IBM Research AI
Characterizing Audio Adversarial Examples Using Temporal Dependency. Zhuolin Yang, Bo Li, Pin-Yu Chen and Dawn Song. ICLR 2019

Inference-phase threat



Can I know a trained model has Trojan (backdoor)?

IBM Research AI

Adversary trains a Trojan model using clean data + poisoned data and release the trained model

Trojan trigger

Task: does a given model 
has backdoor?

Credit: Ren Wang @ RPI

Training-phase threat



Practical Detection of Trojan Models with Limited Data

• Data-limited TrojanNet Detector: 

• only requires one sample per class

• nearly perfect detection performance

• Data-free TrojanNet Detector:

• does not require any data

• uses neural activation maximization

• Shortcut hypothesis: Our detector compares 
similarity between per-sample perturbation
and universal perturbation (shortcut)

• Our detector can generate potential trigger 
patterns and targeted labels for inspection

IBM Research AI Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, and Meng Wang. 
Practical Detection of Trojan Neural Networks: Data-Limited and Data-Free. ECCV 2020

Inference-phase threat



Defenses: Detection and Patching

IBM Research AI

Trained neural network
- Large models with “good”   
test performance
- Handful of clean data for 
inspection

Detection

No Trojan 
found

Patching

Car inspection Car fix Car wash



Problem Setup: 
Trusted Finetuning with Limited Data
• Given a model from an untrusted source, can one use a small set of 

clean and trusted data samples to sanitize the model, in order to 
alleviate the potential backdoor effect while maintaining similar 
performance on regular task?

• The size of trusted data samples should be limited, otherwise training 
from scratch outweighs the risk of using tampered models

• This problem is beyond detecting backdoor models (post-detection 
phase) -> Model recovery instead of model detection

IBM Research AI

Training-phase threat



Mode Connectivity in Loss Landscape

https://izmailovpavel.github.io/curves_blogpost/Timur Garipov Pavel Izmailov Dmitrii Podoprikhin Dmitry P. Vetrov Andrew G. Wilson. 

Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. NeurIPS 2018
IBM Research AI

https://izmailovpavel.github.io/curves_blogpost/


Trusted Finetuning / Model Sanitization
• Quadratic Bezier Curve:
𝜙𝜃 𝑡 = 1 − 𝑡 2𝜔1 + 2𝑡 1 − 𝑡 𝜃 + 𝑡2𝜔2

0 ≤ 𝑡 ≤ 1

• Training loss: 
𝐿 𝜃 = E𝑡~𝑈𝑛𝑖𝑓 0,1 𝑙𝑜𝑠𝑠(𝜙𝜃 𝑡 )

• Use stochastic optimization on the trusted 
dataset to update 𝜃

• How do we start with two trained models? 
(see paper)

• Neuron alignment improves mode 
connectivity

Trained Model 1 (𝑡 = 0); 
denoted by 𝜔1

Trained Model 2 (𝑡 = 1); 
denoted by 𝜔2

Parametrized simple curve 
function 𝜙𝜃 𝑡 , 0 ≤ 𝑡 ≤ 1

Sanitized models

N. Joseph Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, and Rongjie Lai. 
Optimizing Mode Connectivity via Neuron Alignment. NeurIPS 2020

Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan Ramamurthy, and Xue Lin. Bridging Mode Connectivity in 
Loss Landscapes and Adversarial Robustness. ICLR 2020

IBM Research AI



Mode Connectivity Provides Good Prior for 
Trusted Finetuning with few clean data

IBM Research AI

Trojan-free 
models



Trusted Finetuning Outperforms Baselines
• Baselines: (i) Finetuning (ii) Train from scratch (iii) Weight Pruning+Finetuning (iv) random 

Gaussian perturbation to model weights
❑ Train from Scratch removes backdoor but has low clean accuracy

❑ Pruning remains high clean accuracy but suffers high attack  success rate

❑ Finetuning is suboptimal when the data size is limited

✓ Ours maintains superior 
accuracy on clean data 
while simultaneously 
attaining low attack 
accuracy

✓ The success of using 
mode connectivity is 
NOT by chance: 1000 
noisy models suffer 
from low clean accuracy 
and high attack success 
rate

Higher is better

Lower is better



Adversarial Training and Benchmarks 

• Adversarial training: 𝑚𝑖𝑛𝜃 σ𝑖=1
𝑛 𝑚𝑎𝑥 𝛿𝑖 𝑖=1

𝑛 ,||𝛿𝑖||≤𝜖
𝑙𝑜𝑠𝑠(𝑥𝑖 + 𝛿𝑖 , 𝑦𝑖 ; 𝜃)

• TRADES: 𝑚𝑖𝑛𝜃 σ 𝑖=1
𝑛 𝑙𝑜𝑠𝑠 𝑥𝑖 + 𝛿𝑖 , 𝑦𝑖 ; 𝜃 + 𝜆 ⋅ 𝑚𝑎𝑥 𝛿𝑖 𝑖=1

𝑛 ,||𝛿𝑖||≤𝜖
𝑙𝑜𝑠𝑠(𝑓𝜃 𝑥𝑖 , 𝑓𝜃 𝑥𝑖 + 𝛿𝑖 ; 𝜃)

• Use of unlabeled data or pretraining can improve adversarial robustness

• Adaptive attack and Auto attack; RobustBench
IBM Research AI

Inference-phase threat

ICLR’18
ICML’18



HRS Training: Hierarchical Random Switching 

• A randomness-driven training method that achieves 5X better 
robustness-accuracy trade-off than SOTA

IBM Research AI

Xiao Wang*, Siyue Wang*, Pin-Yu Chen, Yanzhi Wang, Brian Kulis, Xue Lin, and Sang Chin, “Protecting Neural Networks with Hierarchical Random 
Switching: Towards Better Robustness-Accuracy Trade-off for Stochastic Defenses,” IJCAI 2019

Inference-phase threat

https://www.google.com/url?q=https%3A%2F%2Fwww.ijcai.org%2Fproceedings%2F2019%2F0833.pdf&sa=D&sntz=1&usg=AFQjCNFr567GQM6zRf85jd0vRhIdje-9VA


SPROUT: Self-Progressing Robust Training
Minhao Cheng, Pin-Yu Chen, Sijia Liu, Shiyu Chang, Cho-Jui Hsieh, Payel Das. AAAI 2021

CAT: Customized Robust Training for 
Improved Robustness
Minhao Cheng, Qi Lei, Pin-Yu Chen, Inderjit Dhillon, Cho-Jui Hsieh

IBM Research AI

Inference-phase threat



SPROUT: Self-Progressing Robust Training

• Observation: static label smoothing during training improves 
adversarial robustness

• Label smoothing: instead of model training on one-hot coded labeled 
data samples {𝑥𝑖 , 𝑦𝑖}𝑖=1

𝑛 ,  we train on {𝑥𝑖 , ෤𝑦𝑖}𝑖=1
𝑛 , where

෤𝑦 = 1 − 𝛼 𝑦 + 𝛼 ∙ 𝑢 ,   𝛼 ∈ (0,1)

• In practice, 𝑢 =
1

𝐾
𝟏 (i.e. uniform label smoothing)

• Pros: Attack-independent training, efficient

• Cons: Marginal robustness gain compared to adversarial training

IBM Research AI

Self-Progressing Robust Training. Minhao Cheng, Pin-Yu Chen, Sijia Liu, Shiyu Chang, Cho-Jui Hsieh, Payel Das. AAAI 2021



Dirichlet Label Smoothing

• Our proposed parameterized label technique

• Draw training label from a parameterized distribution:

෤𝑦 = 1 − 𝛼 𝑦 + 𝛼 ∙ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛽

• Self-progressing training with Dirichlet label smoothing:

𝑚𝑖𝑛𝜃𝑚𝑎𝑥𝛽 σ𝑖=1
𝑛 𝑙𝑜𝑠𝑠(𝑥𝑖 , ෤𝑦𝑖 ; 𝜃, 𝛽)

• Recall Adversarial Training [Madry ICLR’18]:

𝑚𝑖𝑛𝜃 σ𝑖=1
𝑛 𝑚𝑎𝑥 𝛿𝑖 𝑖=1

𝑛 𝑙𝑜𝑠𝑠(𝑥𝑖 + 𝛿𝑖 , 𝑦𝑖 ; 𝜃)

IBM Research AI



SPROUT = Dirichlet LS + Gaussian 
Augmentation + Mixup - Attack Independent!
• Dirichlet LS: ෤𝑦 = 1 − 𝛼 𝑦 + 𝛼 ∙ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛽

• Gaussian Augmentation: ෤𝑥 = 𝑥 + Ν(0, 𝜎2Ι)

• Mixup of two data samples 𝑥𝑖 , 𝑦𝑖 , 𝑥𝑗 , 𝑦𝑗 : 

෤𝑥 = λ𝑥𝑖 + 1 − 𝜆 𝑥𝑗 , ෤𝑦 = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗 ,   𝜆 ∈ (0,1)

• Overall training objective: 𝑚𝑖𝑛𝜃𝑚𝑎𝑥𝛽 σ𝑖=1
𝑛 𝑙𝑜𝑠𝑠( ෤𝑥𝑖 , ෤𝑦𝑖 ; 𝜃, 𝛽|𝑥𝑖 , 𝑦𝑖)

• These three techniques are free of attack-generation 

• We will show the robustness gains from these three methods are 
complimentary

IBM Research AI

mixup: Beyond Empirical Risk Minimization. Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz. ICLR 2018
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Substantial Robustness Improvement

IBM Research AI



Better Scalability and Comprehensive Performance

IBM Research AI



Customized Adversarial Training (CAT)

• Recall Adversarial Training [Madry ICLR’18]:

𝑚𝑖𝑛𝜃 σ𝑖=1
𝑛 𝑚𝑎𝑥 𝛿𝑖 𝑖=1

𝑛 , 𝛿𝑖 ≤𝜖𝑙𝑜𝑠𝑠(𝑥𝑖 + 𝛿𝑖 , 𝑦𝑖 ; 𝜃)

• Not all samples should be treated equally in adversarial training

• Nor all their training labels

• Our CAT formulation:

𝑚𝑖𝑛𝜃෍
𝑖=1

𝑛

𝑚𝑎𝑥 𝛿𝑖 𝑖=1
𝑛 , 𝛿𝑖 ≤𝜖𝑖

𝑙𝑜𝑠𝑠(𝑥𝑖 + 𝛿𝑖 , ෤𝑦𝑖 ; 𝜃)

IBM Research AI



How does CAT work? Self-Progressing!

• 𝑚𝑖𝑛𝜃 σ𝑖=1
𝑛 𝑚𝑎𝑥 𝛿𝑖 𝑖=1

𝑛 , 𝛿𝑖 ≤𝜖𝑖
𝑙𝑜𝑠𝑠(𝑥𝑖 + 𝛿𝑖 , ෤𝑦𝑖 ; 𝜃)

෤𝑦𝑖 = 1 − 𝑐𝜖𝑖 𝑦𝑖 + 𝑐𝜖𝑖Dirichlet(1)

The model prediction should be less confident for perturbed samples 
𝑥𝑖 + 𝛿𝑖 that are further away from 𝑥𝑖

1. Initialize 𝜖𝑖 with 𝜖𝑖 = 0

2. In each epoch, if 𝑥𝑖 + 𝛿𝑖 still can be classified correctly as 𝑦𝑖 , increase 𝜖𝑖 (to 
a maximum value) , otherwise decrease

3. Assign training label ෤𝑦𝑖 = 1 − 𝑐𝜖𝑖 𝑦𝑖 + 𝑐𝜖𝑖Dirichlet(1) to 𝑥𝑖 + 𝛿𝑖
4. Update model 𝜃 with {𝑥𝑖 + 𝛿𝑖 , ෤𝑦𝑖}

5. Repeat 2 to 4

IBM Research AI



CIFAR-10 results

IBM Research AI



Robustness Certification and Evaluation
Certificate for a data sample: For a given model 𝜃 and a given data sample 𝑥,
provide a certificate ϵ for a threat model (e.g. norm-based perturbation ||𝛿||) such
that the model prediction of the data sample will not be altered as long as the
attack strength is no greater than ϵ :

IBM Research AI

𝒑𝒓𝒆𝒅 𝒙|𝜽 = 𝒑𝒓𝒆𝒅 𝒙 + 𝜹|𝜽 for any 𝜹 ≤ 𝝐



How do we evaluate adversarial robustness?

• Game-based approach
❑Specify a set of players (attacks and defenses)

❑Benchmark the performance against each 
attacker-defender pair

o The metric/rank could be exploited;

• Verification-based approach

❑Attack-independent: does not use 
attacks for evaluation

❑Can provide a robustness certificate 
for safety-critical or reliability-
sensitive applications: e.g., no attacks 
can alter the decision of the AI model 
if the attack strength is limited

IBM Research AI

- Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks, 
Guy Katz, Clark Barrett, David Dill, Kyle Julian, Mykel Kochenderfer, CAV 2017
- Efficient Neural Network Robustness Certification with General Activation Functions,
Huan Zhang*, Tsui-Wei Weng*, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel, NIPS 2018

No guarantee on unseen 
threats and future attacks

Optimal verification is provably 
difficult for large neural nets –
computationally impractical



Verification: lower bounds on robustness

IBM Research AI

Decision boundary

Other Decision boundaries

Decision boundary

Ostrich label

Vacuum Cleaner
label

Certified robustness 
Lower bound on perturbation so 
that any perturbations within 
green region cannot cause 
misclassification

Shoe Shop
label

Amount of 
Perturbation

0

Shoe Shop Attack

Maximum Safe 
Perturbation

Lower 
Bound

∆

∆

Vacuum Cleaner Attack



Robustness Estimation Robustness Certification

AAAI ‘19
CNN-Cert

POPL ‘19

DeepPoly (Singh etal)DeepZ (Singh etal),  Neurify (Wang etal)

NeurIPS ‘18
other teams 

MIT-IBM 
teams 

ICLR ‘18

CLEVER (Weng etal)

CNN General
Activation

https://arxiv.org/abs/1801.10578

MLP ReLU

ICML ‘18

Fast-Lin (Weng etal)

https://arxiv.org/abs/1804.09699

MLP
General

Activation

NeurIPS ‘18

CROWN (Zhang etal)

https://arxiv.org/abs/1811.00866

Overview

CNN General
Activation

https://arxiv.org/abs/1811.12395
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Efficient certified bound with activation bounds

Input

Trained CNN

Image

Perturbation 
Size 𝜀

Propagate 
Bounds

Check if 
robust

±𝜀

𝑙𝑐𝑜𝑟𝑟𝑒𝑐𝑡
> 𝑢𝑡𝑎𝑟𝑔𝑒𝑡

𝑥 − 𝑥0 ≤ 𝜀

𝑥0

Ostrich

Vacuum

Shoeshop

Threat model

• Robustness Certificate: Given a data input and a neural network model, under the specified threat model (e.g. 𝐿𝑝 norm 

ball) the top-1 prediction of the perturbed input will not be altered if the perturbation is smaller than 𝜀𝑐𝑒𝑟𝑡𝑖𝑓𝑖𝑒𝑑
IBM Research AI
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Efficient certified bound with activation bounds
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Efficient certified bound with activation bounds
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Efficient certified bound with activation bounds
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Efficient certified bound with activation bounds
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Efficient certified bound with activation bounds
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𝑙𝑐𝑜𝑟𝑟𝑒𝑐𝑡
> 𝑢𝑡𝑎𝑟𝑔𝑒𝑡

[ 𝑙1, 𝑢1 ]

[ 𝑙2, 𝑢2 ]

[ 𝑙3, 𝑢3 ]

[ 𝑙1, 𝑢1 ]

[ 𝑙2, 𝑢2 ]

[ 𝑙3, 𝑢3 ]
𝑥 − 𝑥0 ≤ 𝜀

𝑥0

Ostrich

Vacuum

Shoeshop
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Efficient certified bound with activation bounds

Input

Trained CNN

Image

±𝜀

Perturbation 
Size 𝜀

Propagate 
Bounds

Check if 
robust

𝑙𝑐𝑜𝑟𝑟𝑒𝑐𝑡
> 𝑢𝑡𝑎𝑟𝑔𝑒𝑡

[ 𝑙1, 𝒖𝟏 ]

[ 𝑙2, 𝒖𝟐 ]

[ 𝒍𝟑, 𝑢3 ]

[ 𝑙1, 𝑢1 ]

[ 𝑙2, 𝑢2 ]

[ 𝑙3, 𝑢3 ]

[ 𝑙1, 𝑢1 ]

[ 𝑙2, 𝑢2 ]

[ 𝑙3, 𝑢3 ]
𝑥 − 𝑥0 ≤ 𝜀

𝑥0

Ostrich

Vacuum

Shoeshop

𝑙𝑜𝑠𝑡𝑟𝑖𝑐ℎ > 𝑢𝑣𝑎𝑐𝑢𝑢𝑚
IBM Research AI



CROWN: certification with general activation functions

• How do we efficiently find the activation bounds for certification?

• By applying adaptive linear upper/lower bounds on the activation 
functions, we can derive explicit expression of 𝑚-layer neural 
network output given the input is constrained in an 𝐿𝑝-ball with radius 
𝜖. Thus a bisect 𝜖 can obtain max certified lower bound.

IBM Research AI
Efficient Neural Network Robustness Certification with General Activation Functions, Huan Zhang*, Tsui-Wei Weng*, Pin-Yu Chen, Cho-Jui Hsieh and Luca Daniel, NeurIPS 2018



CNN-Cert represents bounds as convolutions

𝐿 ≤ 𝑓 𝑥 ≤ 𝑈

Fast-Lin[1] 𝐿 = 𝐴𝑥 + 𝐵𝐿
𝑈 = 𝐴𝑥 + 𝐵𝑈

CROWN[2] 𝐿 = 𝐴𝐿𝑥 + 𝐵𝐿
𝑈 = 𝐴𝑈𝑥 + 𝐵𝑈

𝑓 𝑥

𝑥0= Original image
𝑥= Perturbed image

𝑥 − 𝑥0 ≤ 𝜀

Towards Fast Computation of Certified Robustness for ReLU Networks, Tsui-Wei Weng*, Huan Zhang*, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning, Inderjit S. Dhillon and Luca Daniel, ICML 
2018
Efficient Neural Network Robustness Certification with General Activation Functions, Huan Zhang*, Tsui-Wei Weng*, Pin-Yu Chen, Cho-Jui Hsieh and Luca Daniel, NeurIPS 2018
CNN-Cert: An Efficient Framework for Certifying Robustness of Convolutional Neural Networks, Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel, AAAI 2019

CNN-Cert
𝐿 = 𝐴𝐿 ∗ 𝑥 + 𝐵𝐿
𝑈 = 𝐴𝑈 ∗ 𝑥 + 𝐵𝑈

∗ is the convolution operator

IBM Research AI



CNN-Cert supports various building blocks

*
Conv

BN

Batch Norm Residual 
Block

Pooling

Pure CNN

LeNet

ResNet-18

…

IBM Research AI



Certified 
Region

CNN-Cert

Fast-Lin/
CROWN

CNN-Cert is general…

…and efficient

* BN

Conv Batch Norm

Residual 
Block

Pooling

CNN-Cert finds a 
certified region of 
robustness

Ostrich

Vacuum

General 
Activation

CNN

CNN

IBM Research AI



Robustness Verification against Semantic Attacks

IBM Research AI

Jeet Mohapatra, Tsui-Wei (Lily) Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel, “Towards Verifying Robustness of Neural Networks Against Semantic Perturbations,” Conference on 
Computer Vision and Pattern Recognition (CVPR), 2020

• Certificate of image rotation degree 
against prediction changes



CLEVER: a tale of two approaches
• An attack-independent, model-agnostic 

robustness metric that is efficient to 
compute

• Derived from theoretical robustness 
analysis for verification of neural 
networks: Cross Lipschitz Extreme Value 
for nEtwork Robustness

• Use of extreme value theory for efficient 
estimation of minimum distortion

• Scalable to large neural networks

• Open-source codes: 
https://github.com/IBM/CLEVER-Robustness-Score

IBM Research AI

Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach, Tsui-Wei Weng*, Huan Zhang*, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Guo, Cho-Jui Hsieh, and Luca Daniel, ICLR 2018
On Extensions of CLEVER: a Neural Network Robustness Evaluation Algorithm, Tsui-Wei Weng*, Huan Zhang*, Pin-Yu Chen, Aurelie Lozano, Cho-Jui Hsieh, and Luca Daniel, GlobalSIP 2018

≈ CLEVER score

input-output 
perturbation
analysis  of 
neural net



CLEVER way for Adversarial Robustness Evaluation
An attack-independent, model-agnostic robustness metric that is efficient to compute

Before-After robustness comparison

• Will my model become more 
robust if I do/use X?

Other use cases 

• Characterize the behaviors and 
properties of adversarial examples

• Hyperparameter selection for 
adversarial attacks and defenses

• Reward-driven model robustness 
improvement

IBM Research AI

Same set of 
data for 

robustness 
evaluation

Original 
model

Modified 
model

do/use X

CLEVER 
score

CLEVER 
score

Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach, Tsui-Wei Weng*, 
Huan Zhang*, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Guo, Cho-Jui Hsieh, and Luca Daniel, ICLR 2018

≈ CLEVER score



Examples of CLEVER

• CLEVER enables robustness 
comparison between different

❑Threat models

❑Datasets

❑Neural network architectures

❑Defense mechanisms

IBM Research AI

http://bigcheck.mybluemix.net

http://bigcheck.mybluemix.net/


Take-aways

• Adversarial robustness is a new AI standard toward trustworthy ML

❑Robustness does not come for free: adversarial examples exist in digital space, physical world, and 
different domains

❑High accuracy ≠ Good robustness

❑Arms race: adversary-aware AI v.s. AI for adversary

• How to evaluate and improve model robustness?

❑Various attack threat models and taxonomy

❑Incorporate domain knowledge, attack-agnostic defense

❑Scalable and efficient robust training & verification 

• Adversarial machine learning beyond attacks and defenses

❑Model reprogramming

• Join us for the exciting journey!

• Twitter: @pinyuchenTW

IBM Research AI

Human

DataAI
Robustness



Roadmap toward Holistic Adversarial Robustness

IBM Research AI

• In-house sensitivity and reliability tests for developed models

•Generate prediction-evasive examples (per user constraints)

•Customize to model deployment conditions (e.g. cloud APIs)

Attack

(Bug Finding)

•Detecting and mitigating potential adversarial threats

•Plug-and-play model patching for a given model

•Landscape exploration: model fix and cleaning

Defense

(Model Hardening)

•This model is certified to be attack-proof up to a certain level 

•Quantifiable metric for certified robustness

•AI standards, governance, and law regulation

Verification

(Model Certificate)

•Data augmentation

•Model reprogramming: data-efficient transfer learning

•Model watermarking

Applications to AI

(Model Boosting)

Data 
(Domain) 
- specific

Practical

Efficiency/Maximal 
utility/Compatibility

Model -
agnostic

Training Testing Monitoring

Penetration Testing



Online Resources for Adversarial Robustness
• J. Z. Kolter and A. Madry: Adversarial Robustness - Theory and Practice

(NeurIPS 2018 Tutorial)
• Pin-Yu Chen: Adversarial Robustness of Deep Learning Models (ECCV 2020 

Tutorial)
• Pin-Yu Chen and Sijia Liu: Zeroth Order Optimization: Theory and 

Applications to Deep Learning (CVPR 2020 Tutorial)
• Pin-Yu Chen and Sayak Paul: Practical Adversarial Robustness in Deep 

Learning: Problems and Solutions (CVPR 2021 Tutorial)

IBM Research AI

https://www.youtube.com/watch?v=TwP-gKBQyic
https://www.youtube.com/watch?v=-QbKyOuEoxc
https://www.youtube.com/watch?v=17AL1mS3uxw
https://sites.google.com/view/par-2021


Sample Surveys for Adversarial Robustness

IBM Research AI

• Book on “Adversarial Machine Learning” 
authored by Cho-Jui Hsieh@UCLA and 
Pin-Yu Chen, to appear in 2022



Making AI model Robust is truly ART

IBM Research AI
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Trends I observed in Adversarial Machine Learning
• Attack:

• Adversarial attack on [Task] 
• Black-box adversarial attack on [Task]
• Hard-label black-box adversarial attack on [Task]
• Efficient adversarial attack for [Perturbation Norm]

• Defense:
• Defending against adversarial attacks using [Method]
• Detecting adversarial examples using [Method]
• Certified robustness for [Task]/[Norm]
• Adversarial training using [Technique]

• Reflection:
• All empirical defenses are vulnerable
• How practical is the threat model? (e.g. unrestricted adversarial examples)
• Intriguing properties of [New Network Architecture]
• Tradeoff between adversarial robustness and [Factor] (e.g. privacy, fairness, interpretability)
• Hardness of adversarial ML: optimization and generalization

Sustainable?
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• My incredible collaborators (IBM Research, MIT, UCLA, North Eastern Univ, 
UIUC, Georgia Tech, Univ Minnesota, RPI, and many others)

• MIT-IBM Watson AI Lab https://mitibmwatsonailab.mit.edu/
• RPI-IBM AI Research Collaboration https://airc.rpi.edu/
• IBM AI Horizon Network: https://www.research.ibm.com/artificial-

intelligence/horizons-network/
• IBM Trusted AI Group: Payel Das, Saska Mojsilovic
• IBM AI-Security Group
• IBM Big Check Demo Group
❑Personal Website: www.pinyuchen.com
❑Twitter: pinyuchen.tw 
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Now is the time to query me for questions!

• Pin-Yu Chen

• pin-yu.chen@ibm.com

• www.pinyuchen.com

• Twitter: @pinyuchenTW

Come to our workshop on “Adversarial Learning Methods for 
Machine Learning and Data Mining”, tomorrow 8am-12pm 

Q&A

mailto:pin-yu.chen@ibm.com
http://www.pinyuchen.com/

