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Meta learning = Learn to learn

Typical Machine Learning
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Meta learning = Learn to learn

Meta Learning
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Why Meta Learning?

* Because human designed learning algorithms are not always
efficient. Typical deep learning needs a large amount of data.

* In human language processing, most languages are low
resourced.

6,000,000
Statistics at 00:03, 12 August 2021 (UTC)
Source: https://meta.wikimedia.org/wiki/List_of Wikipedias
4 000,000
Can meta learning invent learning algorithm
that can learn with little data?
2,000,000

321 languages
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not a survey

Part |: Basic Idea of Meta Learning

Part Il: Applications to Human Language Processing

— break

Part Ill: Advanced Topics

Only focus on human language processing



H (A) Learning to initialize

‘ (B) Learning to compare ‘ (C) Other

Text Classification

(Douetal., 2019)

(Bansal et al., 2019)

(Holla et al., 2020)

(Zhou et al., 2021b)

(van der Heijden et al., 2021)
(Bansal et al.. 2020)

(Murty et al., 2021)

(Yuetal., 2018)
(Tan et al., 2019)
(Geng et al., 2019)
(Sun et al., 2019)
(Geng et al., 2020)

Learning the learning algorithm:
(Wuetal., 2019)

Network architecture search:
(Pasunuru and Bansal, 2020)
(Pasunuru and Bansal, 2019)
Learning to optimize

(Xuetal., 2021b)

Learning to select data:

(Zheng et al., 2021)

Sequence Labelng

(Wu et al.., 2020)
(Xiaetal., 2021)

(Hou et al., 2020)
(Yang and Katiyar, 2020)
(Oguz and Vu, 2021)

Network architecture search:
(Liet al., 2020b)
(Jiang et al., 2019)

Relation Classification

(Obamuyide and Vlachos, 2019)
(Bose etal.. 2019)
(Lvetal., 2019)

(Ye and Ling, 2019)
(Chenetal., 2019a)
(Xiong et al., 2018a)
(Gaoetal., 2019)
(Ren et al., 2020)

Knowledge Graph Completion

(Xiong et al., 2018b)
(Wang et al., 2019)
(Zhang et al., 2020)
(Sheng et al., 2020)

Word Embedding

(Hu et al., 2019)

(Sun et al., 2018)

Network architecture search:
(Liet al., 2020b)
(Jiang et al., 2019)

Question Answering

(M hamdi et al., 2021)
(Nooralahzadeh et al., 2020)
(Yan et al., 2020)

(Hua et al., 2020)

Machine Translation

(Guetal., 2018)
(Indurthi et al., 2020)
(Lietal., 2020a)
(Park et al., 2021)

Network architecture search:
(Wang et al., 2020b)
Learning to select data:
(Wang et al., 2020d)

(Pham et al., 2021)
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The table is online.
https://jeffeuxmartin.github.io/meta-learning-hlp/



Part I: Basic Idea of Meta Learning

e Starting from Machine learning

e Introduction of Meta Learning

e Learning to Initialize

e More Meta Learning Approaches
e Learning to Compare

e Meta learning vs. Other Methods

Part II: Applications to Human Language Processing

Part lll: Advanced Topics
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Machine
Learning 101




Dog-Cat Classification
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Machine Learning

= Looking for a function

Step 1: What is
learnable

Step 2: Define
loss function

Weights and biases of neurons
are learnable.

Using 0 to represent the
learnable parameters.



Training Examples

Machine Learning

Step 1: What is
learnable

|
0 ?

A A
Cross-entropy -
v

Step 3: J i
Optimization 4 )

K
cat dog
L(6))= z dy Ground Truth

Step 2: Define

loss function
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Machine Learning 101

K
Step 1: What is sum over
learnable loss: 1(0) = z d training
k=1 examples
Step 2: Define 6 =arg mgn 1()

loss function

done by gradient descent

f 7 is the function learned by
learning algorithm from data




Introduction of
Meta Learning



What is Meta Learning?

Can we learn this function?

X Following the same
(Training Examples\ K three steps in ML!

, function

¥ f Learnin
f‘é— > F 'S Hand-crafted
dog algorithm
J

input

; E f classifier ] Learned from data
Testing

output




Meta Learning — Step 1

* What is learnable in a learning algorithm?

_ Component
il Net Architeciure,

ﬁ/ .‘,f', = Deep Elnitial Parameters,

= F Learning : Optimizer, :

cat dog

In meta, we will try to
v

. learn some of them.
—> [ classifier
- Testing

}

cat




Meta Learning — Step 1

* What is learnable in a learning algorithm?

Component
Tralnlng Examples F E ............... :.................:
¢ : Net Architecture, :
A Deep :lInitial Parameters,

I'l'__> F<_

Learning i Optimizer,
dog :

¢: learnable components

v
; —> [ classifier
Testing

}

cat

Categorize meta learning based
on what is learnable



Meta Learning — Step 2

* Define loss function for learning algorithm F

L(¢)
L)@ L@t CH

Task 1 : = PN "":
Apple & | Train o Test “ S

Training Orange apple  orange apple orange
Tasks
Task 2 Train FT Test (@}B g
Car & Bike :

bike bike car



Meta Learning — Step 2

Task 1

Training 6 ”
Examples —
apple orange

}

Fi,, o
classifier f o

How to define L(¢)
L(¢) |

: parameters of the classifier learned by F
using the training examples of task 1



Meta Learning — Step 2

Task 1

Training
Examples

classifier f71 o

v

apple orange

. O

|

v

How to define L(¢)
L(p) t

How can we know a classifier is good or bad?

Evaluate the classifier on testing set



Meta Learning — Step 2 Testing Examples
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rainin -l
Task 1 g ﬁ
Examples - 1 1
apple orange
} fa1 fat
Testing Fy 1 1
Examples l
2 |
Ll ) ) S f’gl - -
A ‘ apple orange apple orange
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apple orange prediction =..@.r.q;f:?:.en.trgw;....Si.r.Q.S.S;-.e.n.t.r.@ny:;
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Ground Truth



Meta Learning — Step 2 Testing Examples

N -

2N - |
Training é , S
T—

Examples

Task 1

apple orange 1 1

l f E f g1
Testing F¢ o 1 1
Examples
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‘ -\%é« — fa1

apple orange apple orange
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‘ /1 Cf)mpute J
d’fference e apple orange apple orange

Ground Truth



Meta Learning — Step 2 Testing Examples

b -

- y Y
Trainin @ -
Task 1 9 |
Examples - 1 1
apple orange
} fa1 fat
Testing Fy o 1 1
Examples l
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Meta Learning — Step 2

Task 1 Training
Examples -
apple orange
Testing Fy
Examples l
by -

® . —f

- Y

apple orange prediction
I I

Task 2

Testing
Examples

prediction
I I

Total loss: L(¢) =[I + 12 ] (sum over all the

training tasks)



Meta Learning — Step 2

Task 1 Training
Examples —
apple orange
Testing F¢
Examples l
by Pt

® . —f

-, (JA;}JE\\I‘

orange prediction
I I

ll

apple

Total loss: L(¢) = Z ["

n=1

N

Task 2

Testing
Examples

prediction
I I

lZ

(N is the number of the
training tasks)



Meta Learning — Step 2 Testing Examples

In typical ML, you compute the
Task 1 loss based on training examples

In meta, you compute the loss
based on testing examples

Hold on! You use testing
examples during training???

apple orange prediction
I T I
ll

Compute
difference <----:--

i
apple orange apple orange

Ground Truth




Meta Learning — Step 2

In typical ML, you compute the
Task 1 loss based on training examples
In meta, you compute the loss
based on testing examples
of training tasks.

SATE com

apple orange prediction
| |

ll

Compute
difference <\ =

Testing Examples




Meta Learning — Step 3

N
* Loss function for learning algorithm L(¢) = 2 ["

n=1

* Find ¢ that can minimize L(¢)) ¢ = aryg mqg'n L(p)

* Using the optimization approach you know

If you know how to compute dL(¢)/0¢p

Gradient descent is your friend.
What if L(¢) is not differentiable?

Reinforcement Learning / Evolutionary Algorithm

Now we have a learned “learning algorithm” F<7>



Framework e,

Not related to :
the testing task :

Training Tasks

Task 1

Task 2

v

. : | i
B Achieve Few-shot learning N bike " car )

only need little labeled training data

¥,
: Learned
> F<7> “Learning
Testing Algorithm”
.« Task l
%
What we really > f@
care about

*
.



ML v.s. Meta



Goal

Machine Learning = find a function f

Dog-Cat f( \ ‘

Classification &

Meta Learning

=~ find a function F that finds a function f

it
Learning ( ﬁ Tﬁ_ ;E

Algorithm cat dog cat dog
Training Examples




Machine Learning

Training Data One task

-
Meta Learning on
Training tasks Train
Task 1 Train é Test S
Apple & - B
Orange apple  orange apple orange

f\f‘
Task 2 Train Test @Q
Car & Bike 1 l e
Support set Query set

(in the literature of “learning to compare”)



Machine Learning Within-task Training

o
Train ﬁ ‘g'r—b F —>f§

cat dog

Hand-crafted
Meta Learning

r > 2o | -
. R )
TaSk 1 Tr ain 6 ~— TeSt W SN\

Training apple orange apple orange
Tasks <
r\‘fl'“
Task 2 | Train Test @WQ
~ bike car
Learning Across-task Training

N

®  Algorithm



I : Training Examples
Machine Learning Ining Examp

}

> _
; Within-task fe

Test  Testing

: cat
Meta Learning

Training Tasks

?/ o) Learned
T e > F=  “Learning :
: - Y | Within-task ¢ ol 'thg”i
i Testing =~ o8 ESLINE
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i Train raining l

: 0 . _ 9
Across-task : Within-task
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LOSS

Machine Learning

(K

1(8) = 2 d, |- Sum over training
i(=1
(N

examples in one task

Meta Learning

Sum over testing
. n
L(¢) = z ~ examples in one task

Sum over training tasks




N If your optimization method needs to

L(¢p) = ) compute L(¢)

n=1

Outer Loop in
“Learning to initialize”

Traini Across-tas(training
raining 6 includes within-task

Examples apple  orange training and testing
l Inner Loop in
Testing Fy “Learning to initialize”
Examples | 1
\ = Within-task Training
apple orange prediction Within-task Testing

| |
.......................... » O compute the loss




Machine Learning

Within-task Within-task
. . — .
| Training Testing w
~—
Meta Learning Episode
Across-task Wlth!n.-task Wlthln.—task
Training  : Training Testing
Many times
Across-task Within-task Within-task
: : . S :
Testing : Training Testing :
. — S -/ ;
P iassmsssssssssssssssssssssssssssnnsnesasssssssssssssssssssssssssnmnnmnnnt

Episode




Learning to Initialize

Model-Agnostic Meta-Learning (MAML)

Mammals

Chelsea Finn, Pieter Abbeel, and Sergey Levine, “Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks”, ICML, 2017



Step 1 —What is Learnable?

P

llll> %

Network :
6’ 9//
Structure |Init P Update =0 — Update —

|

gradient
Gradient T
Descent — Compute
(Function F) Gra(iient
MAML: learnable -
initial parameters | "2NNg
Data

I

gradient

I

Compute
Gradient

T

Training
Data



Step 2 — Loss Function

Task 1 Training Task 2
Examples —
apple orange
Testing Fy Testing Fy
Examples l Examples 1
d -
¢$ . —/n — fp2
; ;
apple orange prediction bike  car prediction
I I I
v v
[ 14

N
Total loss: L(¢) = z ["
n=1



Step 3 — Optimization
«

N N
Lip)= ) I"
Across-task training

id) <P W")L(d))b_' (outer loop in MAML)

ol/0¢pq
IR 01/d¢,
n=1 n=1 ¢ [al/a¢i]
How to compute V4! b; : the i-th

("isignored here) parameter of ¢



Step 3 — Optimization 0l/0¢q
al/0¢,
— ¢ —nVyl Vol ~ |—

Training - ) -
Examples - ﬂ \

apple  orange

1 04 Oy  eeeres 0]_ ......
Testing Fy \\ /
Examples |
- ;;" — :
apple  orange predi‘ction oL = 6£ 00

Sum over the
parametersin 0

N«



Step 3 — Optimization

b bl

Training .
EXGmp/eS 6 »

apple  orange

}

Testing F(p
EXGmp/eS 1
ola—%

/ ‘ )
apple orange prediction

~

Within-task Training
(inner IOOp in MAML)

Can be computationally
intensive ...

Within-task Testing



Step 3 — Optimization

0l z 0l 0@
0p; 00,091
Can be computationally intensive ...

Network l ] : y
#6, # 6
Structure Init CI5 Update Update —

gradient gradient
Gradient T T
Descent , Compute __, Compute
(Function F) Gradient Gradient

Training Training

Data Data



Step 3 — Optimization

0l _Z ol (a0
0¢i  £100;10¢:

Can be computationally intensive ...

 Reduce the parameter update steps in within-task
training (using only one step is typical)

 First order approximation: FOMAML, Reptile

* Reptile: Alex Nichol, Joshua Achiam, John Schulman, On First-
Order Meta-Learning Algorithms, arXiv, 2018

* Inventing efficient ways to compute gradients:
iMAML

* iMAML: Aravind Rajeswaran, Chelsea Finn, Sham Kakade, Sergey
Levine, Meta-Learning with Implicit Gradients, NeurlPS, 2019



Turtles all the way down?

* MAML learns the
initialization parameter

by gradient descent

 What is the initialization
parameter ¢° for ¢?

Learn to initialize

Learn to learn to
initialize?

Learn to learn to learn
to initialize?



More Approaches



Basic form: 0tt! « gt — Agt

O pt| m ize r Adagrad, RMSprop, NAG, Adam ......
Is the optimizer learnable?
v N ~
Can be learned by MAML ?

.

— 0" —] Updat 6 Updat 6

1 i
Gradient Descent éorr:jpute —_— éon:jpute
(Function F) ra T|ent ra T|ent
Training Training

Data Data



Learning Optimizer
Step 1 — What is learnable?

gradient
Update = Ot « gb’ ® gt-1 -I—Qb”@' —gt1!
Weight g
Decay Dynamic learning rate
Step 2 — Loss L
00— Update — gl — Update —> 2 e > ?
T0 Tl .
o 9 g Testing
~ Examples

R
o
.
.

Training Examples «---Training Task



Learning Optimizer

Step 3 — Optimization forget gate input gate
‘ f gradient
Update = @t « qb © g1 +gb”® -9
Weight ,s" g
Decay Dynamic learning rate
This is a “RNN”!
(approximation) hidden state l
o t
00— Update — gl — Update —> 2 e > ?
T0 . Tl .
o G e > iINPUL <seeeees g Testing
~ Examples

“
.
“
.
.



Sachin Ravi, et al., Optimization as a Model for
Few-Shot Learning, ICLR, 2017

O pt| m ize r forget gate input gate
? ‘ gradient
Update = ¢ @t +o"'O g
Weight %
Decay Dynamlc Iearnlng rate 3
! ? ’ * ’ Loyer 2 ? ! ° ? 0 Layerz
Layer 4 Layer4
- mﬁ%‘\\\/ \/\/D
19— _Layer5 Layer 5 S :

(a) Forget gate values for 1-shot meta-learner

8 9 10

(b) Input gate values for 1-shot meta-learner



Loss

Marcin Andrychowicz, et al., Learning to learn by

O pt I m I Ze r gradient descent by gradient descent, NIPS, 2016

Quadratics MNIST MNIST, 200 steps
o W === ADAM | |
'1.‘ === RMSprop

Loss

M
-y
g ‘.f.u“_*.

N I Y e
A i e

T T T T 1
120 140 160 180 200

Step
MNIST, 40 units MNIST, 2 layers MNIST, RelLU
eme ADAM —— e —
. === RMSprop A\
&‘\.‘\ = GO0 “. ‘\*\
10V ‘:}\‘ h, === NAG . \" .
- W, Sh.. = LSTM \ o
\‘1{\\‘ -\_“-. ‘-_-\ * if.h‘
‘b&‘ “"'-n“.._ -"ﬂs:-ghi‘:;;-"‘-'q
T T T I 1 T I T T 1 T I T T 1
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

Steps



Network Architecture Search (NAS)

6
¢ A
0°— Update —O'— Update — 67
Structure | |nit
10 t
f T
Gradient Descent '—» Compute Compute
: Gradient Gradient
(Function F) 1 1
Training Training
Data Data



Network Architecture Search (NAS)

b =argminl(@)  VyL($) =?
\ Network

. . Architecture
* Reinforcement Learning

* Barret Zoph, et al., Neural Architecture Search with Reinforcement Learning, [CLR
2017

* Barret Zoph, et al., Learning Transferable Architectures for Scalable Image
Recognition, CVPR, 2018

* Hieu Pham, et al., Efficient Neural Architecture Search via Parameter Sharing, [CML,

2018
An agent uses a set of actions to —L(¢)
determine the network architecture. Reward to be

¢: the agent’s parameters maximized



Network Architecture Search (NAS)

Across-task  Update ¢ to maximize reward —L(¢)

Tra|n|n g . Numher‘ Filter | Filter | Stride Stride | [Number Filcer
. |of Filters \ Height Width v Height \ Width } |of Filters|. Height Y

ARAPAEARARy

— > > > > > >
o ol Fol Fof Fof o
5 A WA LA A LA LA A LA
I II_Iayer N-1 > < Layer N > < Layer N+1

agent ¢ (RNN)

form a
—L
2 A network

INPUT C1: leature maps S4: 1. maps 16@5x5
C5: 1ayer TPUT
120 Fé: layer ?U PU

Accuracy
of the
network

|
| Ful comlecu‘on | Gaussian connections
Convolutions Subsampiing Comvolutions  Subsampling Full connection

A Full Convolutional Neural Network (LeNet)

Train the network
Within-task Training



Network Architecture Search (NAS)

b =argminl(@)  VyL($) =?
\ Network

. . Architecture
* Reinforcement Learning

* Barret Zoph, et al., Neural Architecture Search with Reinforcement Learning, [CLR
2017

* Barret Zoph, et al., Learning Transferable Architectures for Scalable Image
Recognition, CVPR, 2018

* Hieu Pham, et al., Efficient Neural Architecture Search via Parameter Sharing, [CML,
2018

* Evolution Algorithm

* Esteban Real, et al., Large-Scale Evolution of Image Classifiers, I[CML 2017

* Esteban Real, et al., Regularized Evolution for Image Classifier Architecture Search,
AAAI 2019

» Hanxiao Liu, et al., Hierarchical Representations for Efficient Architecture Search,
ICLR, 2018




Network Architecture Search (NAS)

b =argminl(@)  VyL($) =?
\ Network

Architecture

e DARTS  Hanxiao Liu, et al., DARTS: Differentiable Architecture Search, ICLR,

2019
KN [7] ?
] 2 [ “ ]
» 2] (2] E
w T i, =)



Data Augmentation / Data Reweighting

-
Sub-Policy 1

Sub-Policy 2

(e

i — — |
Data n"\iz}/ —
Augmentation =

i (— —

l:]: Categorical

: Bernoulli E: Identity

Augmented

) Sub-Policy N

: Possible path
: Sampled path

Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, Quoc V. Le,
AutoAugment: Learning Augmentation Policies from Data, CVPR, 2019

Data Reweighting

Step 6

il
1
[e+l) — gitl — g — meta = ()
° ° ﬁ‘m Z Voli (W{ (B}) |H”]
i=1

@{Hl}

Step 7

= Meta-Weight-Net
= Classifier network

_.| w[tj Hﬁ,r:}{ﬂj i) Er_lr IZ’: V{H.E"’f“[wr"}: H}waa*['“""{wrl LMJ {"”1] = i) = “11_: Z VLI (wle)); B0+ D )R L™ ) |“nH w{t+1) ]_'

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, Deyu Meng,
Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting, NeurlIPS, 2019



Learning as a Network?

Andre1 A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan
Pascanu, Simon Osindero, Raia Hadsell,

Meta-Learning with Latent Embedding Optimization, ICLR, 2019

T 2 m)

This is a Network.
Its parameter is ¢

(Invent new learning algorithm! Not gradient descent anymore)

[ |

Training

Training
Data

Data



Until now ...... Next ......

cat cat

T

Learning
Algorithm p——
(Function F)

Learning + Classification
(Function F)

- ~
l' A

v

."'

Testing Data

Training Data  Testing Data Training Data



Learning to Compare



Training

Meta Learning

Training tasks

. -

Task 1 , = L
Train Test || S

Apple & - »%;.‘h{a
Orange apple orange apple orange

Task 2

_ Train Test (= Q f%%
Car & Bike 1 l ” 3
Support set Query set

(in the literature of “learning to compare”)



Training

Meta Learning

Training tasks

= > e
 Task 1 | -
Train Test 6‘

Apple & - )

.. apple  orange apple orange
Training | ©°rnee
Tasks
Task 2 Train g Test [ Q S
\Car & Bike 1 : l bike
p Learning Support set Query set
¢  Algorithm

(in the literature of “learning to compare”)



Testing

Meta Learning

Training Tasks

: | l Learned %

Testing
: Task

Across-task
Testing -

Train

Within-task
Training l

Test z > 5
- Within-task f9

Testing l

>F(/]5

“Learning :
Algorithm”:

* .
. .
---------------------------------------------------------------------------------------



Learning to Compare

 What is the learned learning algorithm in this case?

* Think about non parametric models such as
k-nearest neighbors
* All training data are stored =) no learning needed
* Performance depends on the distance/similarity metrics

* ‘Learning to compare’ algorithms
* learn such models
* do not have the within-task training
* make the metrics trainable across tasks




First Example: Siamese Network

Koch, Zemel, Salakhutdinov, 2015
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First Example: Siamese Network

Koch, Zemel, Salakhutdinov, 2015

v

Different

o
=
o
@
Q
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oa
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score
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Large score # Yes

Small score # No
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Siamese Network
- Intuitive Explanation

¥

Learning the similarity scores:  Far
- Convolutional NN away
- Similarity functions “

As close as

)

.

“ .
» possible
|

%
[ ——

)
3
o
)
al
=
3
)

¥

— SCore

Large score W Yes P
Small score » No

o
3
o
M
ol
=
3
5




Frame It as a Meta Learning Setting

Train 6 Test Yes

Training =
' Test  °  Yes

Tas kS frain —_— - G

w’\rf“

Train (3 \»a Test No
Testing Yes
Tasks or

Yes

t

Network

Network




Matching Network

Vinyals, Blundell, Lillicrap, Kavukcupglu, Wierstra, 2017

0 x) = €UDIED)

Yk L ec(f(£),9(xy))
c: cosine distance J=

a

a

trainable networks,
e.g. deep convolutional nets <= fG Pk(ylf’ S) =

Xi: examples in the support set t Z a(X, x;)y;
i=1

X:one example in
the query set

o



Prototypical Network

Snell, Swersky, Zemel, 2017

(a) Few-shot (b) Zero-shot

Image from the original paper

[ ]
- | =[]
[ ]
P(y = k|%) =
exp(—d(fp(x), cx))

f 2 exp(—d(fo(x), ci1))
9

——

= X:one example in
Xi: examples in the support se » the query set



Relation Network

Sung, Yang, Zhang, Xiang, Torr, Hospedales, 2018

trainable networks

” ~

— N S
— D N
— e
— N S
feature concatenation
\ J
Y

relation module




Meta Learning vs.
Multi-task Learning vs.
Transfer Learning



Meta Learning vs. Multi-task
Learning

* Both use training data from many different tasks
but have different objectives

* Meta learning aims at improving the accuracies of
future tasks while multi-task learning optimizes the
accuracies on all existing tasks

* The more tasks, the better the meta model, while
multi-task learning methods might have problems
with a large number of tasks



Meta Learning vs. Transfer
Learning

* The goals are similar: improving accuracies on
future new tasks

* While meta learning focuses on improving the
training algorithms for future tasks, transfer
learning aims at re-using knowledge learnt from
previous tasks

* Meta learning assumes the same distribution
between training tasks and testing tasks while
transfer learning does not assume it between
previous tasks and future tasks



Part |I; Meta Learr

Ing to

Human Language

’rocessing




Training Task

Framework of Meta Learning

— s

Training
Examples

1

Test
Examples

J

\

{model input, ground truth}

-2

Constraint of “learning to initialize”: All the tasks must

Testing Task

=E

|

Training Test
Examples Examples

\

L{model input, ground truth}J

use the same model architecture.




General Questions

Training Task Testing Task

ﬂ ...... %

[Training} Test Training [ Test }

Examples Examples Examples Examples
[{model input, ground truth}} {model input, ground truth}
How are you AR I I

What if the model input of different tasks are different

languages?
Simply use Multilingual BERT




Training Task

General Questions

— s

Training
Examples

J

Test
Examples

\

[{model input, ground truth}}

How are you

Testing Task

%

Training Test
Examples Examples

\

{model input, ground truth}

A X EF M

BERT (and its family) also find good initialization.

Q1: Do we still need “learning to initialize”?




General Questions

Training Task Testing Task

ﬂ ...... %

[Training} Test Training [ Test }

Examples Examples Examples Examples
[{model input, ground truth}} {model input, ground truth}
How are you 2 classes AKX 4 classes

Q2:
What if different tasks have different model output space?




Learning to Initialize

* Go through 42 papers about learning to initialize
for speech/NLP applications in the last three years

18

Become
popular

(M
(M

I

2018 2019 2020 2021



(if a paper uses multiple

I_ea rﬂ | ﬂg tO | n |t|a ‘ |Ze approaches, we counted

the one performs the best.)

other
11.9%
Reptile
9.5%
MAML
FOMAML 57.1%

21.4%




Machine Translation

% 28 H machine learning
Machine
& — o

Translation

End-to-end models
Training Task Testing Task

Fr-En W

Jiatao Gu, Yong Wang, Yun Chen, Kyunghyun Cho, Victor O.K. Li, Meta-Learning for
Low-Resource Neural Machine Translation, EMNLP, 2018

Training Task Testing Task

Rumeng L1, Xun Wang, Hong Yu, MetaMT, a Meta Learning Method Leveraging
Multiple Domain Data for Low Resource Machine Translation, AAAI, 2020




Machine Translation

”””’f'ﬂlilate

i Qe ik Smaxy; .
AL \\ ” .;%f;i'*%‘%é A Unsupervised MT
rfz,,,,/? ] B &g 2_; _ .
””kf%E“g“S <):,\> e ARM 5 T (Training with
\‘b@? Vg AT . S .
R monolingual data)

Language 1 Language 2

Training Task Testing Task

[ L LN NN J ' C . C

nly unparallel data in each task

Cheonbok Park, Yunwon Tae, Taehee Kim, Soyoung Yang, Mohammad Azam
Khan, Eunjeong Park, Jaegul Choo, Unsupervised Neural Machine Translation for Low-
Resource Domains via Meta-Learning, ACL 2021



Parsing

* Example: task-oriented semantic parsing

e.g., seq2seq

Utterance: Driving directions to the Eagles game

Tree Representation:
IN:GET_DIRECTIONS

/\

Driving directions to SL:DESTINATION

IN:GET_EVENT

//7\

the SL:NAME_EVENT  SL:CAT_EVENT

Eagles game

[SL:DESTINATION [IN:GET_EVENT the [SL:INAME_EVENT

{Semantic Parse: [IN:GET_DIRECTIONS Driving directions toJ

Eagles ] [SL:CAT_EVENT game ]]]]




Parsing

Training Task Testing Task

Anna Langedijk, Verna Dankers, Phillip Lippe, Sander Bos, Bryan Cardenas
Guevara, Helen Yannakoudakis, Ekaterina Shutova, Meta-learning for fast
cross-lingual adaptation in dependency parsing, arXiv, 2021

Training Task

Testing Task

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke Zettlemoyer, Sonal Gupta, Low-

Resource Domain Adaptation for Compositional Task-Oriented Semantic Parsing,
EMNLP, 2020

Alarm

There is a trend to generate task automatically in
semantic parsing (Part ).



Dialogue State Tracking

User: | will be traveling to Cambridge and cannot wait to try the restaurants, but could you help me with finding a hotel?

Agent: Would you prefer a guesthouse? the Acorn guest house is in the north and moderately priced. 4 starts with free internet and parking.
User: | would prefer a hotel type hotel, it just needs to be in the moderate price range and does not need to have free parking, but needs wifi.
Agent: Sure! | found Ashley hotel. It is located at 74 Chesterton road. Would that work for you?

User: Yes, that sounds like a good place. | appreciate the information.

Agent: You are welcome. Would you like a room, or perhaps | could help you with something else?

User: Yes, can you tell me the star rating of that hotel?

Agent: It has 2 stars.

User: Thanks, | also need a restaurant in the centre that serves European food. It needs to be in the same price range as hotel.

Agent: How about the Galleria?

User: Sounds good. | would like to make a reservation for Friday at 17:15 for 4 people.

Agent: Okay | was able to make you a reservation and your reference number is DWMS hotel t e
User: Could you also book me a taxi that arri r otel type: hote

Agent: Where will you be departing from? hotel price range: moderate

User: From the hotel. | would like to get a contact number for the taxi also, just in case s| hotel Internet: yes

Agent: | was able to book that taxi for you. Their contact number is 07236475648. That ¥  hotel name: Ashley hotel hything
else today?

restaurant area: centre
restaurant food: European
restaurant price range: moderate
restaurant name: Galleria

. restaurant book day: Friday
Dla|Ogue restaurant book time: 17:15

State Tracki ng restaurant book people: 4
taxi departure: Ashley hotel

taxi destination: Galleria

End-to-end models, e.g., TRADE, taxi arrive by: 17:15
DST QA, Simple TOD, etc. State

User: No, that will be all. Thank you, goodbye.




Dialogue State Tracking

Use
//Training Task Testing Task \v

=

Yi Huang, Junlan Feng, Min Hu, Xiaoting Wu, Xiaoyu Du, Shuo Ma, Meta-
Reinforced Multi-Domain State Generator for Dialogue Systems, ACL, 2020

Lingxiao Wang, Kevin Huang, Tengyu Ma, Quanquan Gu, Jing Huang, Variance-reduced
First-order Meta-learning for Natural Language Processing Tasks, NAACL, 2021

Saket Dingliwal, Bill Gao, Sanchit Agarwal, Chien-Wei Lin, Tagyoung Chung, Dilek
&Q\Hakkani-Tur, Few Shot Dialogue State Tracking using Meta-learning, EACL, 2021 /
S

restaurant food: European
restaurant price range: moderate
restaurant name: Galleria

. restaurant book day: Friday

Dia Iogue restaurant book time: 17:15

State Tracki ng restaurant book people: 4

taxi departure: Ashley hotel
taxi destination: Galleria

End-to-end models, e.g., TRADE, taxi arrive by: 17:15
DST QA, Simple TOD, etc. State




Task-oriented Dialogue / Chatbot

End-to-end Task-oriented Dialogue: Training and
testing tasks are different domains.

Kun Qian and Zhou Yu, Domain adaptive dialog generation via meta
learning, ACL 2019

Kun Qian, Wei Wei, Zhou Yu, A Student-Teacher Architecture for Dialog Domain
Adaptation under the Meta-Learning Setting, AAAI 2021

Yinpei Dai, Hangyu Li, Chengguang Tang, Yongbin Li, Jian Sun, Xiaodan Zhu,
Learning Low-Resource End-To-End Goal-Oriented Dialog for Fast and Reliable
System Deployment, ACL, 2020

End-to-end Chatbot: Training and testing tasks are

different personas.

Zhaojiang Lin, Andrea Madotto, Chien-Sheng Wu, Pascale Fung,
Personalizing Dialogue Agents via Meta-Learning, ACL, 2019




Speech Recognition

| Speech how are vyou
W mwm ”f Recognition ® e

speech text
P End-to-end models,

e.g., seg2seq, CTC

Training Task Testing Task

a set of languages new languages

Jui-Yang Hsu, Yuan-Jui Chen, Hung-yi Lee, META LEARNING FOR END-TO-END LOW-
RESOURCE SPEECH RECOGNITION, ICASSP, 2020

Yubei Xiao, Ke Gong, Pan Zhou, Guolin Zheng, Xiaodan Liang, Liang Lin, Adversarial
Meta Sampling for Multilingual Low-Resource Speech Recognition, AAAI 2021



Speech Recognition

| Speech how are vyou
W MM ”f Recognition ® e

speech text
P End-to-end models,

e.g., seg2seq, CTC

Training Task Testing Task
England anacia™ IR Philippines

a set of English accents new accent

Genta Indra Winata, Samuel Cahyawijaya, Zihan Liu, Zhaojiang Lin, Andrea
Madotto, Peng Xu, Pascale Fung, Learning Fast Adaptation on Cross-Accented
Speech Recognition, INTERSPEECH, 2020



Speech Recognition
how are vyou

| Speech
Nl QR ¢ ¢

speech text
P End-to-end models,

e.g., seg2seq, CTC

Training Task Testing Task

N ELGE
X

Yes. New approaches for speaker adaptive training.

Speaker
1

Speaker Adaptive Training?

Ondrej Klejch, Joachim Fainberg, Peter Bell, Steve Renals, Speaker Adaptive Training
using Model Agnostic Meta-Learning, ASRU, 2019



More ......

Speech Translation

Sathish Indurthi, et al.,
Data Efficient Direct

Texty: Texty || Textc: Text |L

| 2
Speechy:Text; |

Speech,: Text,

Training Task:
ASR, Machine
Translation

1) MetalLearning

Speech-to-Text
Translation with
Modality Agnostic Meta-
Learning, ICASSP 2020

\‘v'
aferunog [speecr: e ]| — [N — R ()

Testing Task: Speech Translation

Code Switching

Genta Indra Winata, Samuel
Cahyawijaya, Zhaojiang Lin, Zihan
Liu, Peng Xu, Pascale Fung, Meta-
Transfer Learning for Code-Switched
Speech Recognition, ACL, 2020
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*

Speech Separation

Separation ||
End-to-end network

Training Task ' Testing Task

Rlh e | "v-i‘; —| Speaker A M’*Mﬁﬂﬂ
Spea k'..rr

Speaker A+ B Speaker C+D

‘.IIIIIIIIIIIIII‘
“IIIIIIIIIIIIII.

P L 4
.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘ YgpeEEEEEEEEEEEEEEER®

Yuan-Kue1r Wu, Kuan-Po Huang, Yu Tsao, Hung-y1 Lee, One Shot Learning for Speech
Separation, I[CASSP, 2021

*
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Question 1: Learn to Init vs. BERT

Learn to Init
(MAML family)

Self-supervised
Learning
(Sesame Street) <«

5




Question 1: Learn to Init vs. BERT

* MAML learns the
initialization parameter

by gradient descent

 What is the initialization
parameter ¢° for ¢?

BERT can serve as ¢°

() 1 - N >
< ' AL s ST
X A o AP ATy o Ny ®
NGNS SO

Turtles all the way down?



Question 1: Learn to Init vs. BERT

Self-supervised
pre-training

No pre-training
(including word
embedding)




Question 1: Learn to Init vs. BERT

76.38

75.0

72.5

70.0

67.5

65.0

o | 6L Reminder domain of TOPv2

—8— BART+Reptile

60.0 —8— BART

58.92
10 25 50 100

SPIS = samples per intent and slot

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke Zettlemoyer, Sonal Gupta, Low-
Resource Domain Adaptation for Compositional Task-Oriented Semantic Parsing,
EMNLP, 2020



Question 1: Learn to Init vs. BERT

Testing task: SciTail

100-

90

S

~. 80-

O

©

S 70

S

< e== BERT
60- e MT-DNN

Reptile

50

10°%  100%° 1002 10%* 10! 10°° 107°
Percentage of Training Data

Zi-Yi Dou, Keyi Yu, Antonios Anastasopoulos, Investigating Meta-Learning Algorithms
for Low-Resource Natural Language Understanding Tasks, EMNLP 2019



Question 1: Learn to Init vs. BERT

Leverage training tasks.

Learn to achieve good
performance on training tasks.

The self-supervised
objectives are different
from downstream tasks.

There is a “learning gap”.



Leveraging Training Task

Training Task Testing Task

s s s |

md Nt
Learn to Init

Training Task Testing Task

N [

Put all data Y ‘
together 4 init
Typical
Multi-task yP!

supervised

learning




Leveraging Training Task

Learn to Multi-task
Initialization Learning
Performance Win (?)
Training Speed Win

Meta learning: consider the “fine-tuning” stage
when learning initialization parameters.

Multi-task learning: do not consider the “fine-
tuning” stage at all.

Counterexample: Haoxiang Wang, Han Zhao, Bo Li, Bridging
Multi-Task Learning and Meta-Learning: Towards Efficient
Training and Effective Adaptation, ICML, 2021



Initialization of “Learn to initialize”

Training Task Testing Task

s s s |

Slower, Y TN
but better LearntoInit

it
Training Task T o Testing Task

N [

Put all data Y ‘
together 4 init
Typical
Multi-task YP

: supervised
learning Faster




Ultimate Way for Initialization? ©

Consider the fine-tuning stage

N
Learn to Init
Utilize
Supervised training tasks
Pre-training )

Self-supervised
Pre-training

Utilize a large amount
of unlabeled data

Cik

Turtles all the way down?



|5 = 20 |5] = B0

LEI]I.gIJElgE MAML MAML- MAML MAML-
Low-Resource Languages

Armenian 6384 59.70 64.78 60.03
Breton 64.18 59.33 66.14 60.84
Buryatj 25.77 26.02 27.33 27.05
Faroesef 68.95 65.30 71.12 66.79
Kazakh 55.07 5392 56.15 54.99
U.Sorbianf Sh.40 31.67 38.78 52.38
Mean 55.7 52.66 57.38 53.68
High-Resource Languages

Finnish 64.89 61.97 65.82 62.47
French 0ih.85 6342 67.25 64.15
Crerman To.41 T4.38 76.72 74.72
Hungar. 62.71 3847 62.52 57.48
Japanese 39.06 39.72 46.81 43 87
Persian 51.81 50.31 34.74 51.08
Swedish 81.36 171.57 81.59 78.10
Tamul 434 46.55 S0.68 50.54
Urdu 535.16 354 37.60 56.28
Vietnam. 43.34 42.62 44.33 43.78
Mean 58.4 5595 59.52 56.53

Anna Langedijk, Verna Dankers, Phillip Lippe, Sander Bos, Bryan Cardenas
Guevara, Helen Yannakoudakis, Ekaterina Shutova, Meta-learning for fast
cross-lingual adaptation in dependency parsing, arXiv, 2021



Our baseline

(One aux. lang.)
[ -+ X

‘ 69.39

46.90

(Two aux. lang.)

XLM
X-MAML

Liang et al. (2020)
Our baseline

67.1
67.14

61.4

61.46 62.73

65.70

(One aux. lang.)
[ - X

‘ 80.19

61.70 6797 64.01

Vi hi hi

66.12

XLM-Rj 56

(Two aux. lang.)

X-MAML

O
)
g
>
L
)
Q.
™)
()
=
)
(Vg

Hu et al. (2020)
Our baseline

64.06
(arhi)

62.67

68.82
(ar,hi)

66.59

XLMR 4 ge
X-MAML

(I, l2) = X

[I

(en,vi)

(One aux. lang.) . 7094 7484 T70.74 73.93
[ - X ar hi ar hi vi ar hi :
(Two aux. lang.) 6695 T71.00 7462 7093 7473 T70.29

Farhad Nooralahzadeh , Giannis Bekoulis, Johannes Bjerva, and Isabelle Augenstein,
Zero-shot cross-lingual transfer with meta learning, EMNLP, 2020



Mixed Results

method p.t.  fit.  libri  vetk  librin vetkon
(1) best m 984 7.76 7.56 5.99
(2) MAML - m 938 8.62 7.54 7.18
(3) best as 967 792 7.64 6.17
(4) ANIL - as 948 7.57 7.53 6.16
(5) ANILc best ac 889 652 7.03 5.33

Yuan-Kueir Wu, Kuan-Po Huang, Yu Tsao, Hung-y1 Lee, One Shot Learning for Speech
Separation, [CASSP, 2021

Supervised pre-training is added.

Mixed Results 7 X
Method lelted-resmfrce setting ‘ ngh-resnurf:e setting 5
de fr ja zh Diff de fr ja zh Diff
ProtoNet 91.1 909 &7.1 855 91.3 91.1 874 88.7|+1.44
foMAML 90.8 874 873 852 91.7 91.2 872 88.1]-1.13
foProtoMAMLn 87.7 87.8 83.9 844 90.8 89.8 86.2 823 ] -3.96
Reptile 89.3 90.2 86.7 855 90.0 89.3 87.1 85.7 \-1.04

Niels van der He1jden, Helen Yannakoudakis, Pushkar Mishra, Ekaterina Shutova, Multilingual
and cross-lingual document classification: A meta-learning approach, EACL, 2021



Question 2: Different Output

Input

Training
Task
2-class

/N

Input

Testing
Task

3-class

not
learned

‘0
‘0
*




Question 2: Different Output

Trapit Bansal, Rishikesh Jha, Andrew McCallum, Learning to Few-
LEOPARD  Shot Learn Across Diverse Natural Language Classification Tasks,
COLING, 2020

Niels van der Heijden, Helen Yannakoudakis, Pushkar Mishra, Ekaterina
ProtoMAML Shutova, Multilingual and cross-lingual document classification: A
meta-learning approach, EACL, 2021

Training Task Testing Task

Other classification

*I1GLUE Cacke



Question 2: Different Output

Input

We do not learn class-specific
parameters.

The class-specific parameters
are generated from data.




Question 2: Different Output

Data of
T T Input

class 1 1 1

avg [0 0 - [zj \

(option) c
Integration of MAML and 1 C
metric-based approach




Learning to Compare in
Natural Language Processing

Thang Vu



Recap - Intuitive Explanation

¥

Learning the similarity scores:  Far
- Convolutional NN away
- Similarity functions “

As close as

)

.

“ .
» possible
|
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)
3
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Large score W Yes ‘
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General Patterns

* Mostly based on:
* Matching Network
* Prototypical Network
* Relation Network

* The main novelties focus on:

* Representation learning
* For asingle instance
* For prototypes/classes
e Scoring functions
 Distance/similarity
* Relation scores



Overview

 Text classification
* Sequence labeling
* Knowledge graph completion



Applications to NLP

 Text classification
* Sequence labeling
* Knowledge graph completion



Induction Networks for Few-Shot Text
Classification

* Key ideas and take-home messages

* Leverage dynamic routing algorithms (proposed in
capsule network — Sabour et al 2017) to improve the
generalization of the class representation

* Leverage the Neural Tensor Network (Socher et al 2013)
to compute the relation scores between queries and
class vectors

e Both steps are important and their combination works
best

Ruiying Geng, Binhua Li, Yongbin Li, Xiaodan Zhu, Ping Jian, Jian Sun,
Induction Networks for Few-Shot Text Classification, EMNLP, 2019



Induction Networks for Few-Shot Text
Classification

Image from the original paper

Sample Class Query Relation One-hot
Vector Vector Vector Score Vector

(X X)
amm T

LS

Class 2 e
Y -4

_ﬂ\

Class 3 | |
N

Encoder

Induction 4(. O .]‘ Relation :): O CD; Oi

| | |
[ ! : . . |
| _.. L + Sigmoid |
|

: Dyna[mc g !
: :
I |
| 1

|

Sabour et al 2017




Diverse Few-Shot Text Classification with
Multiple Metrics

* Argued that in previous work, low variants among

tasks = not realistic
In @ more realistic setting, tasks are diverse

* Key ideas and take-home messages:
* Based on metrics based methods
e Two steps: 1) tasks clustering; 2) metrics-based

e Extend meta learning that allows combining multiple
metrics depending on different task clusters

Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni Potdar, Yu Cheng,
Gerald Tesauro, Haoyu Wang, Bowen Zhou, Diverse Few-Shot Text
Classification with Multiple Metrics, ACL 2018



Diverse Few-Shot Text Classification with
Multiple Metrics

Image from the original paper

Taskl Task2 Task3 Task4 Task5 Taské ... Taskn

* How to cluster tasks: B
* Create a transfer performance matrix ., |
e Apply scores filtering and matrix
completion
* Apply spectral clustering nE = .

Cross-task transfer performance matrix

* How to combine decisions:
* Linearly combine decisions from different task clusters
* Linear coefficients are adaptable parameters

p(ylr) = Z@P (yl: fi)-



Applications to NLP

* Text classification
* Sequence labeling
* Knowledge graph completion



Few-shot Slot Tagging with Collapsed
Dependency Transfer and Label-enhanced
Task-adaptive Projection Network

* Key ideas and take-home messages
* Leverage the CRF framework for sequence labeling task

* Novelties lie on methods to compute transition scores
and emission scores

* The proposed emission scoring method is based on
learning to compare methods

Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou, Yijia Liu, Han Liu, Ting
Liu. Few-shot Slot Tagging with Collapsed Dependency Transfer and Label-
enhanced Task-adaptive Projection Network, ACL 2020



Few-shot Slot Tagging with Collapsed
Dependency Transfer and Label-enhanced
Task-adaptive Projection Network

Query sentence
x: will it rain tonight

Py Few Support Examples

t x(D Is it strong wind outside !

Collapsed Dependency Transfer | Y [0][0] (B weather] [1weather] [O]

| =)
| 22 will it snow
{ T1a1151t1011 Score ] . }r(z] [0] [O] [B-weather]
B =W efat
Label Semantics
iName Semantics Label
will rain .-'f Ordinary ]

Begin + Weather +—— [B-weather] E

E 5 =i :
m_ls‘slc}n core Inner + Weather +—— [I-weather] |
Label-enhanced TapNet { Begmn +

__________________________________________

Proposed CRF Framework



Few-shot Slot Tagging with Collapsed
Dependency Transfer and Label-enhanced
Task-adaptive Projection Network

Query will it rain tonight

P, B-weather
i T

T Projection Space

Few Support Examples
| o lsoftmax{SIMM(E(x)), M(@))e—M o STIPRRETRIRE ,
x s 1t strong wind outside |
X (1) TIs i ind ide |
|—T ] construct y(1)  [O][0] [B-weather] [I-weather] [O] |
[Prototype ] Refe{ﬁnces ] [ Label SemanticH Linear Error Nulling ] 22 il it snow |
‘TT ] 5 x . y(z] [O] [O] [B-weather]

Support Set S 150 Itjo] SUONGE yeatnery WINA [ g OULSIde gy e ,

Wil][ ol it[ 0] SHO“_[B—‘.’:eather] Jame Semantics Label

Ordinary +———— [O]

Begin + Weather +—— [B-weather] E

S !
Emission Score Inner + Weather +—— [I-weather] |

T

Label-enhanced TapNet Begmn +

Proposed CRF Framework



Few-shot Slot Tagging with Collapsed
Dependency Transfer and Label-enhanced
Task-adaptive Projection Network

Query will it rain tonight

P, B-weather
i T

T Projection Space

Few Support Examples
| o lsoftmax{SIMM(E(x)), M(@))e—M o STIPRRETRIRE ,
x s 1t strong wind outside |
X (1) TIs i ind ide |
|—T ] construct y(1)  [O][0] [B-weather] [I-weather] [O] |
[Prototype ] Refe{ﬁnces ] [ Label SemanticH Linear Error Nulling ] 22 il it snow |
‘TT ] 5 x . y(z] [O] [O] [B-weather]

Support Set S 150 Itjo] SUONGE yeatnery WINA [ g OULSIde gy e ,

Wil][ ol it[ 0] SHOW[B—‘.’:eaiher] Jame Semantics Label

Ordinary +———— [O]

Begin + Weather +—— [B-weather] E

S !
Emission Score Inner + Weather +—— [I-weather] |

T

Label-enhanced TapNet Begmn +

Proposed CRF Framework

TapNet (Yoon et al 2019)



Applications to NLP

* Text classification
* Sequence labeling
* Knowledge graph completion



One-Shot Relational Learning for
Knowledge Graphs

* (h, r, 7t?) - a ranking problem, i.e. search for the
right t in a candidate pool C

* Key ideas and take-home messages:

 Embedding function:
* Entity embeddings and neighbor encoders

* Matching scores:
* Matching processor to compute similarity scores

* Could be seen as applying matching network on tail
entity ranking task

Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo, William Yang Wang,
One-Shot Relational Learning for Knowledge Graphs, EMNLP 2018



One-Shot Relational Learning for
Knowledge Graphs

Image from the original paper

PR . {D: sum
i 145 concatenation | Similarity S
vegetarianism 1 {Q): cosine similarity | Imifarity Score

Lifestyle K Occupation d
Leonardo 3 pition held + + / ‘
da Vinci - . R s iy . :
Work location % : Q .’ ! : ;.__.[ LSTM
Languag% @ | ! :
29 " 98 @5 @9
i\ Q_, — l\ =~ \_,I \ Query Reference

________________________

Relation: occupation Entity: painter (da Vinci, The Starry Night) (da Vinci, Mona Lisa)

a) Local graph of entity Leonardo da Vinci b) Neighbor Encoder c) Matching Processor



Few-Shot Knowledge Graph
Completion

* Key ideas and take-home messages:
* The proposed architecture is based on matching network
* Apply attention mechanism for neighbor encoder

* Leverage auto encoder framework for aggregation that
allows few-shot classification and interaction among
examples in the support set

Chuxu Huang, Huaxiu Yao, Chao Huang, Meng Jiang, Zhenhui Li, Nitesh V.
Chawla. Few-Shot Knowledge Graph Completion. AAAI, 2020.



Few-Shot Knowledge Graph
Completion

':a } ) neighbor aggregation matching
word =* Microsoft \encoder/'=\’n9twwk network
matchin
guest =  Nissan fﬁ' o1 > ﬁ_: »—1 > f‘u > 8

./b -/ score
iphone=—* Apple ‘\ g T— 1
~
“produced_by" S~ -~ o i

few-shot reference set

query ; odyssey = Honda

matching
QT)re

.......

=15 <
leader _aoffice N
/OW | — | 2. 4 Microsoft

1
1

1

1

1

1

_______ 1

{ ompete  Appie 1[N !

Apple P|= | " 1
1

1

:.’

I

1

1

.........

5l

query reference set
matching network f,

reference-1 reference-2  reference-k '

____________________

encoder decoder

heterogeneous neighbor encoder fy aggregation network f;



Adaptive Attentional Network for Few-
Shot Knowledge Graph Completion

* Key ideas and take-home messages:
* The proposed method is based on relation network

* As previous paper, apply attention mechanism for
neighbor encoder

* Leverage transformer to model the relation between
head and tail entities

* Apply attention mechanism in the scoring function

Jiawei Sheng, Shu Gou, Zhenyu Chen, Juwei Yue, Lihong Wang, Tingwen
Liu, Hungbo Xu. Adaptive Attentional Network for Few-Shot Knowledge Graph
Completion, EMNLP, 2020.



Adaptive Attentional Network for Few-
Shot Knowledge Graph Completion

(a) (b)

|
|
|
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: :
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Melinda I i
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Summary: General Patterns

* Mostly based on:
* Matching Network
* Prototypical Network
* Relation Network

* The main novelties focus on:

* Representation learning
* For asingle instance
* For prototypes/classes
e Scoring functions
 Distance/similarity
* Relation scores



Network architecture search,
learning to optimize, learning the
learning algorithm, and more



NAS for text classification

Ramakanth Pasunuru, et al., FENAS: Flexible and Expressive Neural Architecture Search, EMNLP, 2020

* Extend ENAS!Y search space
* (accuracy) more activation functions and operations to contain GRU/LSTM etc.

» (efficiency) allowing to initialize search with well-known human-designed structure

Training Task Testing Task

e Performance on GLUE
* FENAS > ENAS > LSTM (all ~24M parameters)

e FENAS about 5x slower than ENAS

Architecture | CoLA  SST-2 MRPC QQP STS-B MNLI QNLI RTE WNLI || AVG
LSTM 17.1 86.9  71.0/78.9 83.2/62.7 67.8/65.6 64.9/658 774 52.1 65.1 64.3
ENAS-RL 14.7 84.1  74.5/82.6 83.8/63.0 72.6/70.7 66.0/66.6 785 51.0 65.1 64.8
ENAS-RS 16.7 85.6  73.7/81.6 81.9/61.5 72.5/704 66.9/67.5 78.8 53.1 65.1 65.3
FENAS 16.4 86.6  71.0/789 84.9/63.7 73.2/71.0 66.6/66.0 79.1 52.7 65.1 65.6

[1] Hieu Pham, et al., Efficient neural architecture search via parameters sharing..

ICML, 2018



NAS for text classification

Ramakanth Pasunuru, et al., Continual and Multi-Task Architecture Search, ACL, 2019

ENAS

Continual architecture search (CAS)

* Sequentially training networks on several tasks without forgetting previously learned
objective

* Designed loss to encourage parameter updates from dataset to dataset orthogonal

Multi-Task Architecture Search (MAS)
* Multi-task version of architecture search to optimize a unified structure for many tasks

Results
* QNLI, RTE, WNLI from GLUE
* CAS > ENAS / BiLSTM+ELMo
e Similar trend in MAS

Training Task Testing Task

(CAS)

\ 4

Dataset 1 (tr) Dataset 1 (val) —>

Dataset 1 (tr) S + Dataset 1 (val) Ex +

(MAS)



Learning the learning algorithm for NLP

Jiawei Wu, et al., Learning to learn and predict: A meta-learning approach for multi-label classification,
EMNLP, 2019

Training Task Testing Task

------ o

 Multi-label classification 5 N

. Cy_ _ (4 *(5) (9) _ . *() _ 9
° Learr“ng to Iearn: L(0;) ;;wt N{yz log y; +(1 Yi ) log(1 Y; )}7

learn the weight (w,) of loss over each label i and example j
* Learning to predict: learn threshold p, for predicting i as True

* Meta-learn a GRU iteratively predicting w, p based on w’, p’ in previous time stamps
* Reinforcement learning (policy gradient) to update the meta learner

ClassN=4
Bt N i pd — 4@ Gt v (O 1.0 0 O 1.0 o)
=3 9 (-1 S ramvy (088 00 003 0 07)
i g=1 Py Prediction

e pe (O 05 O 07 O 04 O 06)

0.5-0.8 0.7-0.5 0.4-0.3 0.6-0.7

reward = - + - +
0.5 0.7 0.4 0.6

e Results

* Entity type classification: FIGER, OntoNotes, and BBN

e Text classification: Reuters-21578 and RCV1-V2
e SOTA results



Learning to optimize for NLP

Weijia Xu, et al., Soft Layer Selection with Meta-Learning for Zero-Shot Cross-Lingual Transfer, MetaNLP

workshop at ACL, 2021

e Zero-shot cross-lingual transfer

* Meta-optimizer

* Soft-select portion of pretrained parameters to be frozen during fine-tuning
« Parameterizedby A 0% = 0! — X A@?
* Learn A episodically similar to MAML (simulating zero-shot transfer scenario)

Training Task

Testing Task

e Results
* NLI on XNLI dataset
* Meta-optimizer >

(vanilla) fine-tuning,
X-MAML

fr es de ar ur bg sw th tr vi zh 1 el hi avg

Devlin et al. (2019)
Wu and Dredze (2019)

- 7430 70.50 62.10 58.35 - - - - - 6380 - - - -
74.60 74.90 72.00 66.10 58.60 69.80 49.40 55.70 62.00 71.90 70.40 69.80 67.90 61.20 66.02

Nooralahzadeh et al. (2020) 74.42 75.07 71.83 66.05 61.51 69.45 49.76 55.39 61.20 71.82 71.11 70.19 67.95 62.20 66.28

Aux. language
Fine-tuning baseline
Meta-Optimizer

el el el el el el el el el el ur ur ur ur
75.42 75.77 72.57 67.22 61.08 70.23 51.70 51.03 64.26 71.61 72.52 69.97 69.16 55.40 66.28
75.78 75.87 73.15 67.34 62.00 70.47 51.22 50.54 63.96 72.06 72.32 70.20 69.34 55.88 66.44

Aux. language: el + ur
Fine-tuning baseline
Meta-Optimizer

74.87 75.78 72.27 66.96 62.73 70.16 50.21 48.20 63.86 71.61 71.97 70.24 69.64 56.04 66.04
75.53 75.93 72.68 67.04 63.33 70.88 51.51 49.89 64.33 72.06 72.36 70.32 70.38 56.29 66.61




Part [1l: Advanced topics in
Meta learning for human
anguage processing




Advanced topics in Meta learning

* Data Selection

 Domain Generalization

e Task Augmentation

* Meta knowledge distillation

* Mitigating catastrophic forgetting



Meta-learning for data selection

* Selecting from multi-lingual (& multi-task) corpora

e Xinyi Wang, et al., Balancing Training for Multilingual Neural Machine
Translation, ACL, 2020

* |shan Tarunesh, et al., Meta-Learning for Effective Multi-task and Multilingual
Modelling, EACL, 2021

* Hieu Pham, et al., Meta Back-Translation, ICLR, 2021
e Selecting from noisy labels

* Guoqing Zheng, et al., Meta Label Correction for Noisy Label Learning, AAAI,
2021

e Jun Shu, et al., Meta-Weight-Net: Learning an Explicit Mapping For Sample
Weighting, NeurlPS, 2019



Selecting from multi-lingual corpora

Xinyi Wang, et al., Balancing Training for Multilingual Neural Machine Translation, ACL, 2020

Training Task Testing Task

» Differential Data Selection (DDS)
 Parameterize sampling strategies, the prob. of sampling task i = Pp(t) = 6"”“’/ Zj eVi

* Iteratively optimizing ¥ with J and 8 with L
Y* = argmin J(0%(¥), Dgev)
¥

o (1/5’) = a'rgénin E:t:,ymP(T;Lb) [Z("B: Y 9)]

* Update Y with REINFORCE (J is non-differentiable)
VYei1 U + R(z,y;60:) - Vylog(P(z,y;v))



Selecting from multi-lingual corpora

Xinyi Wang, et al., Balancing Training for Multilingual Neural Machine Translation, ACL, 2020

Training Task Testing Task

* Experiments
* Model backbone = 6-layer transformers

* 58-languages-to-English translation TED talk datasets!!! (across task train
on all pairs and eval on 8 pairs separately)

* DDS outperforms naive sampling baselines M20
P P g Method Related Diverse
2| Uni (r=00) | 22.63 2481
| Method | Avg. | aze bel glg slk tur rus por ces Té Temp. (7=5) | 2400  26.01
Voo | Prop. 2488 | 1120 1717 2751 2885 23.09° 2289 4160 2680 _~|Frop-(=1) | 2488 2668
MultiDDS-S | 25.52 | 12.20* 19.11* 29.37* 29.35* 2281 2278 4155 27.03 & | MultiDDS 2526  26.65
: : - S | MuliDDS-S | 2552 27.00

[1] Ye Qj, et al.,, When and why are pre-trained word embeddings useful for neural machine translation?, NAACL, 2018



Selecting from multi-lingual & multi-task corpora

Ishan Tarunesh, et al., Meta-Learning for Effective Multi-task and Multilingual Modelling, EACL, 2021

Training Task Testing Task
=&

* Combine DDS with Reptile

* Extend the across task training to multi- tasks and languages
* Tasks: QA, NLI, paraphrase identification, POS, and NER
* Languages - en hi es de fr zh



Selecting from multi-lingual & multi-task corpora

Ishan Tarunesh, et al., Meta-Learning for Effective Multi-task and Multilingual Modelling, EACL, 2021

Training Task Testing Task

En-QA En-QA

L
Es-QA ]

e Results

* Meta-learned models outperform multi-tasks learning baselines (seen
or unseen, i.e., zero-shot, target tasks/languages)

Model ss QA (FD) NLI (Ace.) PA (Acc.)

en hi es de en es de fr en es de fr zh
Baselines 7994 5994 6583 63.17 8139 7837 76.82 7730 9235 8975 8745 89.61 8332
Lang-Limited MTL 69.80 5324 6229 5891 8049 76.10 7518 74.94 9375 8775 8535 8855 8049
Task-Limited MTL 7404 5777 6428 6147 8095 7815 7590 77.14 9365 8665 8625 86.82 8124
All TLPs MTL 63.22 4294 5405 51.61 B80.05 7648 7486 76.18 9350 9030 8845 89.71 82.66
Lang-Limited Temp -0.04 -0.24 -027  +0.07 +0.06 +039 +0.03 -0.70 [+045 | +0.05 +0.35 +0.40 -0.06

g mDDS +0.07 -0.12 +0.06 +0.14 +0.02 -0.61 -0.80 -0.60 -0.25 -0.05 0.00 -0.30 -1.41

Temp +055 +043 [#050 +040 +165 +1.12 +125 4079 +020 -0.15 -055 +0.85 -0.15

Task-Limited aDDS  +021 [#062] -0.67 JEI06] +132 +L10 [#139] +048 [#050] -0.65 -035 [¥145] +1.06

Temp +0.53 +047 | #032 +047 [+1.80 [#122 (4145 +095 +035 +045 +1.20 +1.05 +0.85

All TLPs mDDS-Lang +0.08 +0.50 -1.57 4008 +076 4026 -0.10 +032 +025 [J#085] +0.75 +0.75 +LI1
mDDS-Task +0.18 [#060 +0.11 [#054 +1.50 +090 +072 +072 +0.10 +080 [FI27] | +1.10 ¥

Model ss NER (Acc.) POS (Acc.)
en hi es de fr zh en hi es de zh
Baselines 9323 9572 9584 9732 9548 9434 9615 9357 9602 9737 9260
Lang-Limited MTL 9254 9267 9514 9640 9438 9297 9508 9243 9519 9719  89.71
Task-Limited MTL 9351 9394 9577  97.09 9527 9372 9570 9334 9573 9735 9252
All TLPs MTL 9228 9195 9490 9618 9438 9253 9470 9189 9510  97.03  89.92
Lang-Limited Temp +0.60 [+0.06 +0.09 [+024] 009 047 [006 [-000 [+0.10 +004  -0.17
ang-Limite mDDS 021 085 020 -0.10 -0.57 -055 027 -002  -0.19 006 -0.37
raskoLimited Temp 0790 046 000 007 -0.18 051 022 -005 -021  +0.02 [F009
asirLimite mDDS 0.0 -1.61 0.00 .16 033  -069 -038 [=0:02 -022 [H005] -0.12
Temp -0.15  -070 [¥0M3] [ 000 -0.16 [039] -022 -0.09 -021  +0.03 -0.16
All TLPs mDDS-Lang  -0.16 [=008 4011 008 014 065 [021 010 [=011 4003 -0.17

mDDS-Task -0.27 —0:42 +0.08 -0.14 -0.07 -0.58 -022 -0.14 -0.19 +0.02 -0.09




Selecting from multi-lingual corpora

Hieu Pham, et al., Meta Back-Translation, ICLR, 2021 Training Task Testing Task

""" EnAze

* Formulate back translation as data sampling
* y/xutterances in target (T) / source (S) languages
* Generate x with y and P(x|y) = P(x|y;v)
* Train P(y|x;0) with (generated) x and y

update backward model

Monolingual Target Data L7 Pseudo Parallel Data Ground Truth Parallel Data

S . ) Backward | samples {T 5278888888 s 58 =T, )

| Wie geht es dir haute? + - > How are you today? r————> . [ How are you? J Cross

________________ ! model L ) —-----> gradient <
----------------- —> Entropy
(mmmmmmmmmmmmm oo | l ¢ """ Loss

Wie geht es dir haute? = [ Wie geht es dir? ]
‘ Forward model (t-1) l’ =i :_ . _§ ____________ - - >| Forward model (t) }, e &

* Inner loop 9*(111)=arg;ninEyNUmfom(DT)EINﬁ(xw)[5(%y;9)]

e Quter loop ¥* = argmax Performance(#* (), Dyetapev)
Y

* Multilingual settings
e BacktranslateT->Sand T->¥¢

* Back translate vs. DDS
* Granularity: sampling weights on tokens vs. examples/corpora




Selecting from multi-lingual corpora

Hieu Pham, et al., Meta Back-Translation, ICLR, 2021

* Experiments
* Model backbone = transformer-base

* 58-languages-to-English translation TED talk datasets!!! (across task train
on all pairs and eval on 4 pairs separately)

BT Model Objective } Multilingual
az-en be-en gl-en sk-en

MLE (Edunov et al., 2018) 11.30 17.40 29.10 28.70

No BT 11.50 17.00 28.44 28.19
DualNMT (Xiaet al,, 2016) | 11.69 14.81 25.30 27.07

Meta Back-Translation | 11.92* 18.10* 30.30 29.00
(2] | Method | Avg. | aze bel glg slk tur rus por ces
M20 Prop. 24.88 11.20 17.17 27.51 28.85  23.09* 22.89 41.60 26.80
25.52 | 12.20*  19.11° 29.37* 29.35* 2281 2278 4155  27.03

MultiDDS-S

[1] Ye Qj, et al., When and why are pre-trained word embeddings useful for neural machine translation?, NAACL, 2018
[2] Xinyi Wang, et al., Balancing Training for Multilingual Neural Machine Translation, ACL, 2020 (DDS)



Selecting from noisy labels

[1] Jun Shu, et al., Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting, NeurlPS, 2019
[2] Guoging Zheng, et al., Meta Label Correction for Noisy Label Learning, AAAI, 2021

* Noisy labels
* Meta-learner predicts weights!! / rewrites labels[?! based on noisy labels

and representation of input x 0l«]0[0]0] rkodwiwdws]

* o, W: meta-parameters & parameters

* v/, ¥y noisy/corrected labels EVE [Tcm

° 1; 2; 3, 4. |nner |OOp [} ™

* y; X (clean) examples from meta-training set ’_T?SS

e 5, 6: outer loop

[0]1[o]o]o] [A()][0]1[0]ofo] [AG)]

. [ y y
Training Task | omnemmemnnennenns N €55, for (%5))
: At £ 70 MC ) E—— .
Tr'ep 1 J E . y T i ©
Y fulx) Fur(5)
YYXIL) J l *I I @ &) ! T

Testing Task

o i
—— @ w —nx Vw = wl(a)
Valep 1 - il |
h(x) Yy M) Vi X X Vi




Selecting from noisy labels

[1] Jun Shu, et al., Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting, NeurlPS, 2019
[2] Guoging Zheng, et al., Meta Label Correction for Noisy Label Learning, AAAI, 2021

* Experiments

* Real noise on image classification (Clothing1M dataset)
* Meta-selection > vanilla training

Method Forward Joint Learning MLNT MW-Net GLC MLC
(Patrini et al. 2017)  (Tanaka et al. 2018)  (Li et al. 2019) [1] (Hendrycks et al. 2018) [2]
Accuracy 69.84 72.23 73.47 73.72 73.69 75.78

» Text classification, synthesized noise (2 types and 10 levels / probabilities)
* AG news, Amazon reviews, Yelp reviews and Yahoo answers
* No comparison to vanilla training

Datasets AG Yelp-5 Amazon-5 Yahoo
(# clean labels) (4 x100) (5x100) (5x100) (10 x 100)
MW-Net [1] | 75.91 51.27 49.49 60.18
GLC (Hendrycks et al. 2018) 83.88 60.12 60.31 68.03
MLC [2] 85.27 62.61 61.21 73.72




Meta Learning for
Domain Generalization




Domain Shift

* Training examples and testing examples have
different distributions. = Domain shift

Training Examples Testing Examples

Can meta learning help?



. , Testing
Domain Shift Examples

Domain Adaptation

Training
Examples

Source domain Target domain

e Use little data from target domain to adapt.
* This is a few-shot learning problem.

‘ It is intuitive to apply meta learning here.



. , Testing
Domain Shift Examples

Domain Generalization

Training AN/
Examples ZJ |
cat dog
Domain 1 Domain 2 Domain 3

* The training data may include multiple domains.
* But we know nothing about the target domain.

How to use meta learning to improve domain generalization?



Meta Learning for Domain Generalization

Training domains Testing domain

\ ) -
Y
1 Unknown

Learning during training

4 Model
algorithm
., initialization
|

*
*
*

How to train it?



Meta Learning for Domain Generalization

Training domains Testing domain
3 3
Pseudo testing Unknown
domain during training

\Q / Q Good!
¥
Learpmg N \iodel
algorithm

e.g., initialization




Meta Learning for Domain Generalization

Training domains Testing domain
—
—
Training
Tasks '
—
\—
Testing
—

Tasks




Example — Text Classification

Goal: {EN FR DE}->JA

Meta train

| Taskl: {EN,FR}->DE |

[ Task2: {EN. DE}->FR [

[ Task3: {FR, DE}->EN [

Meta test
| Test task: {ENFR DE}->JA [

Metric-based

U0y

EN FR DE JA

ApprOaCh language | | &OO

A —>
NS

Sadv

oao

O
OO

class

Zheng Li, Mukul Kumar, William Headden, Bing Yin, Ying Wei, Yu Zhang, Qiang Yang,
Learn to Cross-lingual Transfer with Meta Graph Learning Across Heterogeneous

Languages, EMNLP, 2020



Example — Semantic Parsing

E database: concert singer

@ [ Show all countries and the number of singers in each country. ]
Ty

SOaL [ SELECT Country, count(*) FROM Singer GROUP BY Country ]

Test
E database: farm

@ rF'Iltat.':mqe show the different stafuses of cilies and the average ‘
pop ulation of cities with each siatus.

o
sOL |5ELEET Status , avg(Population) FROM City GROUP BY Sl'atus|

Bailin Wang, Mirella Lapata, Ivan Titov, Meta-Learning for Domain Generalization in

Semantic Parsing, NAACL, 2021
Henry Conklin, Bailin Wang, Kenny Smith, lvan Titov, Meta-Learning to Compositionally

Generalize, ACL 2021



To learn more ...

e Da Li, Yongxin Yang, Yi-Zhe Song, Timothy M. Hospedales, Learning to Generalize:
Meta-Learning for Domain Generalization, AAAI 2018

* Yogesh Balaji, Swami Sankaranarayanan, Rama Chellappa, MetaReg: Towards
Domain Generalization using Meta-Regularization, NeurlPS, 2018

* Fengchun Qiao, Long Zhao, Xi Peng, Learning to Learn Single Domain
Generalization, CVPR, 2020

* Vinay Kumar Verma, Dhanajit Brahma, Piyush Rai, Meta-Learning for
Generalized Zero-Shot Learning, AAAI, 2020

* Yun Li, Zhe Liu, Lina Yao, Xianzhi Wang, Can Wang, Attribute-Modulated
Generative Meta Learning for Zero-Shot Classification, arXiv, 2021

(general idea of applying meta learning to domain
generalization, not related to HLP)



Problem of another level ......

* The training examples and testing examples may have
different distributions.

Training Testing
» Model x
Examples - Examples

* The training tasks and testing tasks can also have different

distributions.
Learning
Algorithm Testmg
Tasks

N
Huaxiu Yao, Longkai Huang, Linjun Zhang, Ying Wei, Li Tian, James

\
Training »

Zou, Junzhou Huang, Zhenhui Li, Improving generalization in meta-learning

via task augmentation, ICML, 2021

Tasks




Advanced Topics in Meta
Learning for NLP:
Task Augmentation

Thang Vu



The Main Motivation

* Generate tasks to be able to leverage the
advantages of meta learning methods

e Generate tasks to improve the performance of
meta learning and to overcome overfitting problem



The Main Motivation

* Generate tasks to be able to leverage the
advantages of meta learning methods

e Generate tasks to improve the performance of
meta learning and to overcome overfitting problem



Natural Language to Structured Query
Generation via Meta-Learning

* Key ideas and take-home messages
 Map a natural language question to a SQL query
* Artificially generate pseudo tasks by sampling a batch of
training data as a support set and one example as query
* Design a relevance function to find similar examples

* Relevance function is task dependent

* E.g.in this paper, the relevance function depends on 1) the
predicted SQL type of the input and 2) the input length

* Apply MAML to train the meta learner

Po-Sen Huang, Chenglong Wang, Rishabh Singh, Wen-tau Yih, Xiaodong He,
Natural Language to Structured Query Generation via Meta-Learning, NAACL 2018



Coupling Retrieval and Meta-Learning for
Context-Dependent Semantic Parsing

* Key ideas and take-home messages

e Given a natural language, generate a source code
conditioned on the class environment

e Similar setup as previous paper

* Introduce a context aware retriever to dynamically
collect examples from the training as supporting
evidences

* Apply MAML to train the meta learner

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, Jian Yin, Coupling Retrieval
and Meta-Learning for Context-Dependent Semantic Parsing, ACL, 2019



Coupling Retrieval and Meta-Learning for
Context-Dependent Semantic Parsing

Von Mises-Fischer distribution Image from the original paper
....... L I . .
' Natural language utterance | 1
i ; ; ; v LSTM
( implement this vector in place | ) hy Hx —> UMF(ZxIﬂx, Kf) —> Zx void inc

double [ ] }«—»-: vecElements ]——r[:\

Variables | She ,

( double [] F»m—»[—r <s>  void
hc > [ “UMF(ZCI.U:C, ?C)—)-ZC

f void ]<—> add e S

[ float ]«—» dotProduct '—— ¥

Context environment \
. >Z _p/i-_pL_). ......

Methods

Encoder Latent Variable Decoder

The retriever finds top-K nearest examples based on the following distance:
distance = KL(p \x C)Hp '))

+KL( )Hp lc))




The Main Motivation

* Generate tasks to be able to leverage the
advantages of meta learning methods

* Generate tasks to improve the performance of
meta learning and to overcome overfitting problem



Self-Supervised Meta-Learning for Few-
Shot Natural Language Classification Tasks

* Key ideas and take-home messages

* Generate tasks called Subset Masked Language
Modeling Tasks from unlabelled text

Subset: {Democratic, Capital}
Support set

Sentence Class

A member of the | Party, he was the first African American to be
electedtothe presidenCY. e

The [m] Party is one of the two major contemporary political parties
in the United States, along with its rival, the Republican Party.

Honolulu is the [m] and largest city of the U.S. state of Hawaii. 2

Washington, D.C., formally the District of Columbia and commonly
referred to as Washington or D.C., is the [m] of the United States.

Query: Mew Delhi is an urban district of Delhi which serves as the [m] of India
Correct Prediction: 2

Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai, Andrew McCallum.
Self-supervised Meta-Learning for Few-Shot Natural Language
Classsification Tasks. EMNLP 2020.



Self-Supervised Meta-Learning for Few-
Shot Natural Language Classification Tasks

Subset: {Democratic, Capital}

Support set

Sentence

Class

A member of the [m] Party, he was the first African American to be

The [m] Party is one of the two major contemporary political parties
in the United States, along with its rival, the Republican Party.

electedtothe presidency. i

Honolulu is the [m] and largest city of the U.S. state of Hawaii.

Washington, D.C., formally the District of Columbia and commonly

referred to as Washington or D.C., is the [m] of the United States.

Define N classes
by choosing N unique words

Consider all sentences which
contain these words and choose
randomly a subset for training

Query: Mew Delhi is an urban district of Delhi which serves as the [m] of India
Correct Prediction: 2

[Mask the chosen words with [m] ]




Self-Supervised Meta-Learning for Few-
Shot Natural Language Classification Tasks

Task k BERT SMLMT | MT-BERT (yft;nax ~ MT-BERT LEOPARD Hybrid-SMLMT
4  50.44 + 0857 46.81 +4.77 52.28 + 4.06 55.63 +499 54.16 +6.32 57.60 +17.11
CoNLL 8 50.06 +1130 61.72 +3.11 65.34 +7.12 58.32 +£377 67.38 +£4.33 70.20 + 3.00
© 16 7447 +03.10 75.82 +404 71.67 +3.03 71.29 £330 76.37 +3.08 80.61 +2.77
32 8327 +0214 8401 £173 73.09 +2.42 79.94 +245 83.61 +£2.40 85.51 +1.73
4 4937 +£428 46.23 +£390 45.52 +5.90 50.49 + 440 49.84 +3.31 52.29 + 432
MITR 8 4938+776 61.15+1091 58.19 +2.65 58.01 +£354 6299 +3.28 65.21 +232
16 69.24 +368 69.22 +278 66.09 + 224 66.16 +346 70.44 4289 73.37 + 188
32 78.81 £195 78.82 4130 69.35 £ 098 76.39 £ 1.17  78.37 £ 1.97 79.96 + 148

o000 o060

4 3476 +1120 40.75 +7.33 40.41 £5.33 36.77 £ 1062 50.21 +09.63 52.13 + 1018
Ratine Kitchen 8 3449 40872 43.04 £522 48.35 +17.87 47.98 +£ 0973 53.72 +1031 58.13 L0728
g 16 4794 + 0828 46.82 +394 5294 +7.14 53.79 + 0947 57.00 4+ 08.69 61.02 + 0555
32 50.80+0452 5171 +4e4 54.26 +6.37 53.23 £514 61.12 +04.83 64.69 + 0240

Overall Average




DReCa: A General Task Augmentation Strategy for
Few-Shot Natural Language Inference

* Key ideas and take-home messages:
* Explore the overfitting problem of meta learning

* Propose a task augmentation strategy
* Apply clustering on BERT vectors to create tasks

Shikhar Murty, Tatsunori B. Hashimoto, Christopher Manning. DReCa: A
General Task Augmentation Strategy for Few-Shot Natural Language
Inference. NAACL 2021.



DReCa: A General Task Augmentation Strategy for
Few-Shot Natural Language Inference

* Explore the overfitting problem of meta learning

0.5

o8
D4

(a) 1D sine wave regression (Finn et al., 2017). Each task is a
sine-wave with a fixed amplitude and phase offset.

1 =

(S ¥ L4 X N
e XY /o R
\"X R vt r SF

o
[

(b) Three datasets from our 2D sine wave regression. Each
dataset is a unit square with multiple reasoning categories; A

reasoning category is a distinct sinusoid along a ray that maps
x = (x1,x2) to the value of the sine-wave y at that point.



DReCa: A General Task Augmentation Strategy for
Few-Shot Natural Language Inference

* Explore the overfitting problem of meta learning
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DReCa: A General Task Augmentation Strategy for
Few-Shot Natural Language Inference

* Apply clustering on BERT vectors to create tasks

(i) Embed with BERT

(ii) Produce refinement
of label groups to get
reasoning caltegories

(iii) Construct tasks by pairing up
clusters with different labels




DReCa: A General Task Augmentation Strategy for
Few-Shot Natural Language Inference

* Apply clustering on BERT vectors to create tasks

Model COMBINEDNLI-QANLI COMBINEDNLI-RTE  GLUE-SciTail
MULTITASK (FINETUNE) 69.66 £ 0.39 65.47 = 3.19 75.80 = 2.58
MULTITASK (K-NN) 68.97 + 1.26 63.69 £ 6.65 69.76 + 3.74
MULTITASK (FINETUNE + K-NN) 67.38 = 2.61 66.52 +=5.48 76.44 = 1.77
MAML-BASE 69.43 £ 0.81 72.61 == 0.85 76.38 = 1.25
SMLMT (Bansal et al., 2020b) — — 76.75 + 2.08
MAML-DRECA 71.98 £ 0.79 75.36 £ 0.69 77.91 £ 1.60




DReCa: A General Task Augmentation Strategy for
Few-Shot Natural Language Inference

* Apply clustering on BERT vectors to create tasks

Model COMBINEDNLI-QANLI COMBINEDNLI-RTE  GLUE-SciTail
MULTITASK (FINETUNE) 69.66 £ 0.39 65.47 = 3.19 75.80 = 2.58
MULTITASK (K-NN) 68.97 + 1.26 63.69 £ 6.65 69.76 + 3.74
MULTITASK (FINETUNE + K-NN) 67.38 = 2.61 66.52 +=5.48 76.44 = 1.77
MAML-BASE 69.43 £ 0.81 72.61 == 0.85 76.38 = 1.25
SMLMT (Bansal et al., 2020b) — — 76.75 + 2.08
MAML-DRECA 71.98 £ 0.79 75.36 £ 0.69 77.91 £ 1.60




Advanced Topics in Meta
Learning for NLP:
Meta Knowledge Distillation

Thang Vu



Knowledge Distillation [Hinton et al 2014]

* Use the class probabilities produced by a teacher
model as the soft target to train a student model
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Knowledge Distillation [Hinton et al 2014]

* Use the class probabilities produced by a teacher
model as the soft target to train a student model

Transfer knowledge
from the teacher model to student model




Meta Knowledge Distillation

HERBEEQOVEE

from the teacher model to student model




Meta-KD: A Meta Knowledge Distillation
Framework for Language Model Compression
across Domains

* High level ideas:

Physics — Physics qulatlpll 4@1 Physics
Teacher : > (= Student
(a) Learning from an in-domain teacher.
Physics ‘7
Teacher Physics Equatl.on = Physics
Math — ' > =~ Student
Teacher ‘/

(b) Learning from multiple teachers of varied domains.

Alé;l;lelgzgse ‘7 Physics Equatu;l Physics
I 3
Teacher (= Student

(c) Learning from the meta-teacher with multi-domain knowledge.

Haojie Pan, Chengyu Wang, Minghui Qiu, Yichang Zhang, Yaliang Ji, Hun
Huang. Meta-KD: A Meta Knowledge Distillation Framework for Language Model
Compression across Domains. Arxiv Dec 2020.




Meta-KD: A Meta Knowledge Distillation
Framework for Language Model Compression

across Domains

* High level ideas:

meta-teacher

i domain 1 E@j i meta-teacher learning |:| H |:| H |:| "’I:I

> label

@

i domain 2 E;la_ta_ji .
! — i i i || transferable

v i knowledge

-

——————————————————

Y
: ——— ' meta-distillation l@ : !
' domain 1 Edamj ! - abel

student

Haojie Pan, Chengyu Wang, Minghui Qiu, Yichang Zhang, Yaliang Ji, Hun
Huang. Meta-KD: A Meta Knowledge Distillation Framework for Language Model
Compression across Domains. Arxiv Dec 2020.



Meta-KD: A Meta Knowledge Distillation
Framework for Language Model Compression
across Domains
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Meta-KD: A Meta Knowledge Distillation
Framework for Language Model Compression
across Domains
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Meta-KD: A Meta Knowledge Distillation
Framework for Language Model Compression
across Domains

e Results on MNLI with five domains

Methods Fiction Government Slate Telephone Travel Average
BERTg-single 82.2 84.2 76.7 82.4 84.2 81.9
BERTg-mix 84.8 87.2 80.5 83.8 85.5 84.4
BERTg-mtl 83.7 87.1 80.6 83.9 85.8 84.2
Meta-teacher 85.1 86.5 81.0 83.9 85.5 84.4
BERTg-single —~"X D, BERTy  78.8 83.2 73.6 78.8 819 793
BERTg-mix — 2 KD pERT. 79.6 83.3 74.8 79.0 81.5 79.6
BERTg-mtl 25D, pERTS 79.7 83.1 74.2 79.3 82.0 79.7
Multi-teachers XD, BERTS 77 4 81.1 72.2 772 78.0 77.2
Meta-teacher —2PRED pERTS 80.3 83.0 75.1 80.2 81.6 80.0

Meta-distillation

Meta-teacher ———  BERT5 80.5 83.7 75.0 80.5 82.1 80.4




Meta-KD: A Meta Knowledge Distillation
Framework for Language Model Compression
across Domains

* Results on Amazon Review with four domains

Methods Books DVD Electronics Kitchen Average
BERTg-single 87.9  83.8 89.2 90.6 87.9
BERTg5-mix 80.9  85.9 90.1 92.1 89.5
BERTg-mtl 90.5 865 91.1 91.1 89.8
Meta-teacher 92.5 87.0 01.1 89.2 39.9
BERTg-single —22 N XD, pERTy  83.4  83.2 89.2 91.1 86.7
BERTg-mix —2 XKD BERTS 884  81.6 89.7 89.7 87.3
BERTg-mtl 225D, pERTS 90.5 81.6 88.7 90.1 87.7
Multi-teachers P, BERTs 83.0 784 88.7 877 84.7
Meta-teacher 2> KD, BERTS 80.0 843 87.3 91.6 88.3

Meta Distillation

Meta-teacher » BERTSs 01.5 86.5 00.1 80.7 80.4




Meta Learning for Knowledge Distillation

* Starting point:
* The teacher is unaware of the student
* The teacher is not optimized for distillation

* High-level ideas:
e Student-centered learning

e Teacher models can be updated using feedback from
student models

* Novelty:
* propose pilot update that aligns the learning of the
student and the teacher model

Wangchunshu Zhou, Canwen Xu, Julian McAuley. Meta Learning for
Knowledge Distillation. Arxiv June 2021.



Meta Learning for Knowledge Distillation

* Key ideas and take-home messages

! ] / 1(
L kD L' kD Lkp
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Training | Training | . raining |
Batches | || (pdate | Batches | | i Batches
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Pilot update Update " | Quiz
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1) Teaching experiment - (3) Knowledge
(1) g exp (2) Quiz & Meta update distillation

Wangchunshu Zhou, Canwen Xu, Julian McAuley. Meta Learning for
Knowledge Distillation. Arxiv June 2021.
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Meta Learning for Knowledge Distillation

e Results on dev sets

CoLA MNLI MRPC QNLI QQP RTE SST-2  STS-B

Method 85K) (393K) (37K) (105K) (364K) (2.5K) (67K)  (5.7K)

Dev. Set

BERT-Base (teacher) (2019) 58.9  84.6/84.9 91.6/87.6  91.2 88.5/914 714 93.0 90.2/89.8
BERT-6L (student) (2019) 535 BLUBLT 89.2/844 886 869904 679 91.1 88.1/879

Pretraining Distillation

TinyBERT? (2019) 540  B84.5/845 90.6/86.3 01.1 88.0/91.1 734 03.0 90.1/89.6
Minil.M (2020b) 49.2 840/ - 88.4/ - 91.0 - P10 715 92.0 -

Minil.M v2 (2020a) 525 842 - 88.9/ - 90.8 - MP11 721 024 -

Task-specific Distillation

KD (2015) 539  B2.7/83.2 89.8/85.2 89.4 87.4/90.7 676 91.4  B8.5/88.1
PKDT (2019) 543  82.9/83.4 89.5/84.8 89.8 87.6/90.8 67.5 91.2  B8B.8/88.2
TinyBERT w/o DAT 525  B3.5/83.8 90.6/86.4 89.7 87.8/909 67.9 01.8  89.1/88.7
RCOT (2019) 534  B23/82.9 89.7/85.2 89.6 87.5/906 674 91.3  B8.6/88.3
TAKD' (2020) 537  8277/83.1 89.5/84.9 89.5 87.3/90.6  68.2 91.1  B88.5/88.3
DML (2018) 53.6  82.5/83.0 89.8/85.2 89.7 87.6/90.5  68.5 91.6  BB.5/88.0
ProKTT (2021) 544  82.9/83.3 90.6/86.4 89.9 87.7/90.8  68.4 01.5 88.9/88.4
MetaDistil (ours) 58.5 83.6/83.9 91.2/87.0 90.4  88.2/91.2 69.5 92.4  89.6/89.2

w/o pilot update 56.4  83.2/83.6 90.8/86.7 90.0  88.1/88.7 67.8 02.1  80.3/89.1




Meta Learning for Knowledge Distillation

e Results on test sets

Test Set
BERT-Base (teacher) (2019) 52.1 84.6/83.4 BRB.9/84.8 00.5 71.2/89.2 66.4 03.5 87.1/85.8
Pretraining Distillation
DistilBERT (2019) 45.8 81.6/81.3 RB7.6/83.1 88.8 69.6/88.2 54.1 023  T1.0/71.0
TinyBERT* (2019) 51.1 84.3/83.4 BR.8/84.5 01.6 T0.5/88.3 704 026 B86.2/848
Task-specific Distillation
KD (2019) - 82.8/82.2 B6.8/81.7 88.9 70.4/88.9 65.3 01.8 -
PKD (2019) 43.5 81.5/81.0 B85.0/79.9 89.0 T70.7/88.9 65.5 02.0 B83.4/81.6
Theseus (2020) 47.8 82.4/82.1 87.6/83.2 89.6 71.6/89.3 66.2 022 B85.6/84.1
ProKT (2021) - 82.9/82.2 B7.0/82.3 89.7 70.9/88.9 - 03.3 -
DMLT (2018) 48.5 82.6/81.6 86.5/81.2 89.5 TO.T/88.7 66.3 02,7 85.5/84.0
RCO' (2019) 48.2 82.3/81.2 B§6.8/81.4 89.3 T0.4/88.7 66.5 026 B85.3/84.1
TAKDT (2020) 48 4 82 4/81.7  8A.5/81.3 80 4 70 6/88 8 66.8 Q2§ 85 4/84 1
etaDistil (ours) 50.7 83.8/83.2 88.7/84.7 90.2 71.1/88.9 67.2 93.5 86.1/85.0
w/o pilot update 49.1 83.3/82.8 8B.2/84.1 89.9 T1.0/88.7 66.6 93.5 85.9/84.06




Mitigating Catastrophic
Forgetting by Meta Learning



Lifelong Learning Scenario
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Lifelong Learning Scenario

Dataset Dataset Dataset
model model model




Lifelong Learning Scenario

Dataset Dataset
model 1 model 2 model
@ @ 3

[—aat task 1 } —G-eed-at-l-&&—}

\
Forget task 1,
Only good at task 2

Catastrophic forgetting!

—— - - e




Lifelong Learning
in real-world applications

“dataset 2”’

0’.
L 4

- Feedback

“dataset 1”
. Update

.
.
.
.

P
. g

Training — 5 Mode| = Online

Data
.

Catastrophic forgetting
may happen!
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What is the capital Where is
of the U.S? : MLSS 20217
The answer is QA QA
“Washington, D.C.". Model Model
Taipei Taipel
What is the capital Where is
of the U.S? - MLSS 20217

It’s a network. We do not
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Mitigating Catastrophic Forgetting

: : - Regularizatior -
Selective Synaptic Plasticity pased

Additional Neural Resource Allocation

Memory Replay

* There are already lots of research along
each direction.

* Can meta learning enhance these approaches?




Regularization-based
Dataset 1 Dataset 2

Gradient computed
based on new data



Regularization-based
Dataset 1 Dataset 2

Some regularization

L2 does not work. For prevent forgetting: EWC, SI, MAS ......



Regularization-based
Dataset 1 Dataset 2

satisfy

Nicola De Cao, Wilker Aziz, Ivan Titov,
Editing Factual Knowledge in Language * Not simply use gradient
Models, arXiv, 2021

e Learn how to compute‘”proper”‘
Application: Fact checking, QA update from new data




Regularization-based satisfy
Dataset 1 Dataset 2 ‘

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy ..’A
Pyrkin, Serge1 Popov, Artem Babenko, Editable Neural ~ Gradient com puted
Networks, ICLR, 2020

Application: Machine translation

based on new data



Mitigating Catastrophic Forgetting

: : - Regularization-
Selective Synaptic Plasticity pased

Additional Neural Resource Allocation

Memory Replay

* There are already lots of research along
each direction.

* Can meta learning enhance these approaches?




Additional Neural Resource Allocation

output, outputs outpuls

gt

Expand the network when
there are new dataset.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume
Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, Raia Hadsell,
Progressive Neural Networks, 2016

mnput

Network architecture search can be used when you want to
change the network architecture given new dataset.

Dataset d, Step-1 E Step-2 |Dataset d, E Step-3 |Dataset d, -
b8
. ! 9 O
d391 dag, dags
'V. @ @ P @ @ Eﬂ do o
d\. (‘. g =i 8
. . &
’ ? 3 g g
—»5 35

Ramakanth Pasunuru, Mohlt Bansal, Continual and Multi-Task Architecture Search, ACL, 2019



Mitigating Catastrophic Forgetting

: : - Regularization-
Selective Synaptic Plasticity pased

Additional Neural Resource Allocation

Memory Replay

* There are already lots of research along
each direction.

* Can meta learning enhance these approaches?




Memory-based Parameter Adaptation (MbPA)

Store Experience Store limited data
Dataset 1 Dataset 2 Dataset3 777
- )
Y

Select limited data BESSYEENIREaile]s

. Local
SN adptation

Pablo Sprechmann, Siddhant M. Jayakumar, Jack W. Rae, Alexander Pritzel, Adria
Puigdomenech Badia, Benigno Uria, Oriol Vinyals, Demis Hassabis, Razvan
Pascanu, Charles Blundell, Memory-based Parameter Adaptation, ICLR, 2018
Cyprien de Masson d‘Autume, Sebastian Ruder, Lingpeng Kong, Dani Yogatama,
Episodic Memory in Lifelong Language Learning, NeurlPS, 2019




Memory-based Parameter Adaptation (MbPA)

Select limited data =Xl o== [=ledle]s

: Local
R — . Adaptation

This is few-shot learning problem. # Meta Learning!

Text Classification, QA

Ziru1 Wang, Sanket Vaibhav Mehta, Barnabas Poczos, Jaime Carbonell, Efficient
Meta Lifelong-Learning with Limited Memory, EMNLP, 2020

Relation Extraction

Abiola Obamuyide, Andreas Vlachos, Meta-learning improves lifelong relation
extraction, RepL4NLP, 2019

Tongtong Wu, Xuekai L1, Yuan-Fang L1, Reza Haffari, Guilin Q1, Yujin

Zhu, Guogiang Xu, Curriculum-Meta Learning for Order-Robust Continual
Relation Extraction, AAAIL 2021




F1

Memory-based Parameter Adaptation (MbPA)

+ Meta Learning

Z/§R/: §<;’

Model Model
40 - —a— Enc-Dec
--_-___-'"-—-__ .

304 —*— Enc-D
—#— 0Online EWC —u—/ Online EWC

F1

—m—~ Replay —=— Replay
20 —#— MbPA++ 207 —#— MbPA++
—o— Meta-MbPA —— Meta-MbPA
T | | I I T I 1 I I
Initial QuAcC Trweb Trwik SQuAL Initial SQuAD Triwik QuAC TrWeb
Train dataset Train dataset
QUuAC SQUAD

Ziru1 Wang, Sanket Vaibhav Mehta, Barnabas Poczos, Jaime Carbonell, Efficient
Meta Lifelong-Learning with Limited Memory, EMNLP, 2020



Problem of Another Level ......

Dataset Dataset
model model model

Meta learning can help.
algorithm tasks algorithm tasks algorithm
@ -t @ @ N

Meta learning itself also face the issue of catastrophic forgetting!

Chelsea Finn, Aravind Rajeswaran, Sham Kakade, Sergey Levine, Online Meta-Learning,
ICML, 2019

Pauching Yap, Hippolyt Ritter, David Barber, Addressing Catastrophic Forgetting in Few-
Shot Problems, ICML, 2021



Concluding Remarks




Part |: Basic Idea of Meta Learning

Part II: Applications to Human Language Processing

e Check this! https://jeffeuxmartin.github.io/meta-learning-
hlp/

Part Ill: Advanced Topics

e Data Selection

e Domain Generalization = Generalization of learned model
 Task Augmentation — Generalization of meta learning itself

* Meta knowledge distillation
L , _ Beyond accuracy
* Mitigating catastrophic forgetting



Thank you for
your attention.




