MLSS 2021
Interpretability

why, what and how to



JHIS 15 YOUR MACHINE LEARNING SYSTET?

https://xkcd.com/



THIS 1S YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE: DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

!

https://xkcd.com/



https://xkcd.com/

THIS 1S YOUR MACHINE LEARNING SYSTETM?
|

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

|
WHAT IF THE ANSLERS ARE LRONG? )




THIS 1S YOUR MACHINE LEARNING SYSTET?

V
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What do we mean by interpretability?

e |In a dictionary (Merriam-Webster):

e "to explain or to present in understandable terms’
e In ML (among many)

e “ability to explain or to present in understandable terms to a human’ [Doshi-Velez, K. 16]

e "Interpretability is the degree to which a human can understand the cause of a decision.” [Miller 17]
e In cognitive science (among many)

e "explanations are... the currency in which we exchanged beliefs” [Lombrozo 06]

Sure, but how do we make a working definition for my paper?



Operationalizing interpretability

 Define your desiderata

you are optimizing

clearly specity what your definition 1s, and what

« Do proper guantitative and gualitative evaluation with your end-task

mind

users like the explanation says nothing

Real Time Image Saliency for Black Box Classifiers

Piotr Dabkowski
pd437Q@cam.ac.uk
University of Cambridge

classification,

prevents a confident classification.

e Smallest sufficient region (SSR) — smallest region of the image that alone allows a confident

e Smallest destroying region (SDR) — smallest region of the image that when removed,

Yarin Gal

yarin.gal@eng.cam.ac.uk
University of Cambridge
and Alan Turing Institute, London

A Unified Approach to Interpreting Model

Predictions

more on this

ater

On Completeness-aware Concept-Based
Explanations in Deep Neural Networks

Paul G. Allen School of Computer Science

Axiomatic Attribution for Deep Networks

Mukund Sundararajan“' Ankur Taly *!

2. Two Fundamental Axioms
2.1. Axiom: Sensitivity(a)

An attribution method satisfies Sensitivity(a) if for every
input and baseline that differ in one feature but have differ-
ent predictions then the differing feature should be given
a non-zero attribution. (Later in the paper, we will have a
part (b) to this definition.)

Qiqgi Yan "!

2.2. Axiom: Implementation Invariance

Two networks are functionally equivalent if their outpu
are equal for all inputs, despite having very different impl
mentations. Attribution methods should satisfy Impleme
tation Invariance, i.e., the attributions are always identic
for two functionally equivalent networks. To motivate thi
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University of Washington
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University of Washington
Seattle, WA 98105
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3 Simple Properties Uniquely Determine Additive Feature Attributions

A surprising attribute of the class of additive feature attribution methods is the presence of a single
unique solution in this class with three desirable properties (described below). While these properties
are familiar to the classical Shapley value estimation methods, they were previously unknown for
other additive feature attribution methods.

The first desirable property is local accuracy. When approximating the original model f for a specific
input x, local accuracy requires the explanation model to at least match the output of f for the
simplified input z’ (which corresponds to the original input ).

Property 1 (Local accuracy)

M
f(z) =g(z') = do+ D _ $ix} )
=1
The explanalmn model g(z') matches the original model f(zx) when = = h,(z'), where ¢, =

f(hs(0)) represents the model output with all simplified inputs toggled off (i.e. missing).

The second property is missingness. If the simplified inputs represent feature presence, then missing-
ness requires features missing in the original input to have no impact. All of the methods described in
Section[Z]obey the missingness property.

Property 2 (Missingness)

;=0 = ¢; =0 (6)
Missingness constrains features where !, = 0 to have no attributed impact.
The third property is consistency. Consistency states that if a model changes so that some simplified

input’s contribution increases or stays the same regardless of the other inputs, that input’s attribution
should not decrease.
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2 Concept-based Explanation Desiderata

Our goal is to explain a machine learning model’s decision making via units that are more un-
derstandable to humans than individual features, pixels, characters, and so forth. Following the
literature [45 20], throughout this work, we refer to these units as concepts. A precise definition of a
concept is not easy [[13]. Instead, we lay out the desired properties that a concept-based explanation
of a machine learning model should satisfy to be understandable by humans.

1. Meaningfulness An example of a concept is semantically meaningful on its own. In the
case of image data, for instance, individual pixels may not satisfy this property while a
group of pixels (an image segment) containing a texture concept or an object part concept
is meaningful. Meaningfulness should also correspond to different individuals associating
similar meanings to the concept.

2. Coherency Examples of a concept should be perceptually similar to each other while being
different from examples of other concepts. Examples of “black and white striped” concept
are all similar in having black and white stripes.

Chih-Kuan Yeh!, Been Kim?, Sercan O. Arik’, Chun-Liang Li?,
Tomas Pfister?, and Pradeep Ravikumar!

"Machine Learning Department, Carnegie Mellon University
2Google Brain
3Google Cloud Al

P ConceptSHAP: How important is each concept?

ven a set of concept vectors Cs = {cy, Ca, ...C,, } With a high completeness score, we would like to evaluate the
portance of each individual concept by quantifying how much each individual concept contributes to the final
mpleteness score. Let s; denote the importance score for concept c;, such that s; quantifies how much of the
mpleteness score 7)(C's) is contributed by c¢;. Motivated by its successful applications in quantifying attributes
I complex systems, we adapt Shapley values [[12] to fairly assign the importance of each concept (which we call
nceptSHAP):

finition 4.1. Given a set of concepts C's = {c1, C2, ...C,»} and some completeness score 7, we define the Concept-
AP s; for concept ¢; as

N (m—|S| = 1)YS|!
S;‘(")) = ZSLCL'\c. —m!

e main benefit of Shapley for importance scoring is that it uniquely satisfies the set of desired axioms: efficiency,
mmetry, dummy, and additivity [12], which are listed in the following proposition with modification to our setting:

(S U {e:i}) —n(5)],

oposition 4.1. Given a set of concepts Cs = {c1,Ca, ...C,, } and a completeness score 1), and some importance score
for each concept c; that depends on the completeness score 1. s; defined by conceptSHAP is the unique importance
kignment that satisfy the following four axioms:

o Dummy: If n(u v {c; ) = n(u) for every subset u < Cg\{c;}, then s;(n

e Additivity: If n and 7' have importance value s(n) and s(n’) respectively, then the importance value of

e [ ﬁlcwncy The sum of all impgrtance value should sum up to the total completeness score, Y .- si(1) =
Cs).
. Smr re equivillen orfpvery subfft uJff CR
Si (77
)




|s interpretability possible at all”?

2 MIBEENR Our Machines Now Have Knowledge We'll Never Understand
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OUR MACHINES NOW HAVE ENOWLEDGE WE'LL
NEVER UNDERSTAND
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So wrote Wired’s Chris Anderson in 2008. It kicked up a

https://www.wired.com/story/our-machines-now-have-knowledge-well-never-understand/
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|s interpretability possible at all”?

2 MIBEED Our Machines Now Have Knowledge We'll Never Understand

DAVIO WEINBERGER BACKCHANNEL D4.1B.17 08B:22 PM
® 9

Take away:
We don't need to understand every single thing

about the model.

Key Point:
Interpretability is NOT about understanding all bits and bytes
of the model for all data points.

It is about knowing enough for your goals/downstream tasks.

https://www.wired.com/story/our-machines-now-have-knowledge-well-never-understand/
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How much Is enough?

« What does it mean "the system is fair enough ?

e This hammer isn't perfect, but it's "good enough”

reddit.com
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= for what we are trying to do]
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How much Is enough?

« What does it mean "the system is fair enough ?

= for what we are trying to do]
e This hammer isn't perfect, but it's "good enough”

= for what we are trying to do]

|'m better off having this tool

for [my goal].

reddit.com
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What is the goal?

e End-task metric!

« Everyone's goals are different, but mine is generally:

e Tools to help people use ML more effectively and responsibly such that

1. our values are respected

2. human knowledge Is reflected when appropriate
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Non-goals

Interpretability is NOT: -

e about making ALL models interpretable.

—\V

e about understanding
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BIT about the model

e against developing highly complex models.

e only about gaining user trust or fairness



Non-goals

Interpretability is NOT: -

np| Digital Medicine

Article OPEN Published: 30 April 2019

* about making ALL mode  npeep Jearning predicts hip fracture using

confounding patient and healthcare
variables

e about understanding EV

e against developing highl

Marcus A. Badgeley, John R. Zech, Luke Oakden-Rayner, Benjamin S. Glicksberg, Manway Liu,
William Gale, Michael V. McConnell, Bethany Percha, Thomas M. Snyder & Joel T. Dudley

* on Iy abOUt galn | ng user npj Digital Medicine 2, Article number: 31 (2019) Download Citation &

Take away:
Helping people to distrust the model Is often more

important than helping to trust it.



Interpretability Is not a new problem. Why now?

e Prevalence: It's everywhere, and used to make
potentially life changing decisions.

e Complexity: layers and layers of models of models




When do you need interpretability?

Fundamental underspecification in the problem
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When do you need interpretability?

example1: Safety example 2: Science
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Fundamental underspecification in the problem

example3: mismatched objectives
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When do you need interpretability?

example 2: Science

example3: mismatched objectives

Take away:
More data or more clever algorithm will not solve
iInterpretability.


http://drugs.com

Wait, then what 1s NOT underspecification?

My Blooditypelis
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When we may not need/want mterpretab ity

« No significant conseqguences. Prediction is
what everyone cares.

« Sufficiently well-studied problem with N
abundance of empirical evidence —
Instructs the optimal avoidance

direction based on radio waves
received from the other aircraft

« People might game the system (example of
mismatched objectives)




When we may not need/want mterpretab ity

« No significant conseqguences. Prediction is
what everyone cares.

 Sufficiently well-studied problem with s
abundance of empirical evidence (L s
Instructs the optimal avoidance

direction based on radio waves
received from the other aircraft

» People might game the system (example of /1’5" cA
mismatched objectives) Sy

Take away: ‘
\/Ve don t a\ways need mterpretablllty



But certainly, there will be performance trade-off, right?

» "It is a myth that there is necessarily

a trade-oft between accuracy and True that.
interpretabi I lty [RUdl N " q] Here are a small subset of vast

amount of evidence by many
researchers.

e Carefully building structure in the
model (e.g., architecture, prior, loss

[1] Finale Doshi-Velez, Byron Wallace, and Ryan Adams. Graph-sparse |da: a topic model with

-Fu n Ct' O n) h a S I O n g be e n d O n e tO structured sparsity. Association for the Advancement of Artificial Intelligence, 2015.
[2] Maya Gupta, Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin Canini, Alexander
Mangylov, Wojciech Moczydlowski, and Alexander Van Esbroeck. Monotonic calibrated in-

i ncrease pe r-FO rmaonce w | -t h or terpolated look-up tables. Journal of Machine Learning Research, 2016
[3] Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. Interpretable decision sets: A joint
framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD Interna-

W I -t h O u-t | N -te r reta b I ‘ l-t I n m | N d tional Conference on Knowledge Discovery and Data Mining, pages 1675—1684. ACM, 2016

p y . [4] Been Kim, Julie Shah, and Finale Doshi-Velez. Mind the gap: A generative approach to inter-
pretable feature selection and extraction. In Advances in Neural Information Processing Systems,
[5] Lou Y, Caruana R, Gehrke J, Hooker G. Accurate Intelligible Models with Pairwise Interactions. In: Proceedings of
3 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). ACM; 2013.
Ta ke av\/ay [6] Rudin C, Passonneau R, Radeva A, Dutta H, lerome S, Isaac D. A Process for Predicting Manhole Events In

Manhattan. Machine Learning. 2010;80:1-31.
. 1 [7] Rudin C, Ustun B. Optimized Scoring Systems: Toward Trust in Machine Learning for Healthcare and Criminal
| N 'l:e r‘p r‘eta b | | |'ty an d pe f‘fo rmance 'l: e de—Off g Justice. Interfaces. 2018;48:399—-486. Special Issue: 2017 Daniel H. Wagner Prize for Excellence in Operations
' Research Practice September-October 2018.
’ . 3 [8] Chen C, Lin K, Rudin C, Shaposhnik Y, Wang S, Wang T. An Interpretable Model with Globally Consistent
Ofte N d ON L éX| StS . Explanations for Credit Risk. In: Proceedings of NeurlPS 2018 Workshop on Challenges and Opportunities for Al in
4 Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy; 2018.




What about our cousins?

5 fairness
o+ o oaccountability
Interpretability e—— T
rus

causality etc.



What about our cousins?

fairness

. accountability
Interpretability N
rus

causality etc.

| Take away:
Trust, fairness and interpretability are not
| the same thing.



What about our cousins?

fairness
. accountability
Interpretability N
rus

causality etc.

e [nterpretability may help with them when we cannot formalize these ideas

e But once formalized, you may not need interpretability.
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Sample decision tree #1

/ Pandemic is

over

7 Delta
{ variantisthelast | { There has been

_ variant we saw %_ covid19 variants /

34



Sample decision tree #2

Pandemic is over!

f " Cats are better
%,  thandogs

F We saw no
%, covidl9variants ./

i ten £.oana

9 = S

you and me.

-

We saw Therew o

%,_ covid19 variants
4 ’ lockdowns

Masking up protects

{ has been many 1%

11



Sample decision tree #3
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Sample decision tree #3
e

There
been many 1}
ckdowns J
jlobally. ./

What was the overall logic of the system?

Was the model rely on any one particular feature?

There ™=,
as been many 3
lockdowns  ;
globally. _/




Sample decision tree #3
o

There \
been many 1}
ckdowns j
jlobally. ./

What was the overall logic of the system?

Was the model rely on any one particular feature?

Take away:

' Decision trees aren’t always interpretable
(depending on your goal). |



Do we need a different model?
How about rule lists?

If ( sunny and hot ) then go swim

Else if ( sunny and cold ) then go ski

Else then go work



Do we need a different model?
How about rule lists?

If ( sunny and hot ) then go Swim
Else if ( sunny and cold ) then go ski
Flse if ( wet and weekday ) then go work
Else if ( free coffee ) then attend tutorial
Else if ( cloudy and hot ) then go swim
Flse if ( snowing ) then go ski
“lse if ( New Rick and Morty) then watch TV
“|se if ( paper deadline ) then go work
Flse if ( hungry ) then go eat
“lse if (tired ) then watch TV
-|se if ( advisor might come ) then go work
“|se if ( code running ) then watch TV

[ 11

se then go work



Maybe rule sets are better?

IF ( sunny and hot ) OR ( cloudy and hot ) OR
( sunny and thirsty and bored )

THEN go to beach

ELSE work



Maybe rule sets are better?

IF ( sunny and hot ) OR ( cloudy and hot ) OR

( sunny and thirsty and bored ) OR ( bored and
tired ) OR (thirty and tired ) OR ( code running )
OR ( friends away and bored ) OR ( sunny and
want to swim ) OR ( sunny and friends visiting )
OR ( need exercise ) OR ( want to build castles )
OR ( sunny and bored ) OR ( done with deadline

and hot ) OR ( need vitamin D and sunny ) OR
( just feel like it )

THEN go to beach
ELSE work



Are you saying decision
trees, rule lists and rule
sets don t work?!

Decision trees, rule lists or
rule sets may work for your
application!

The point here is that there Is
no one-size-fits-all method.

http://blog.xfree.hu/myblog.tvn?SID=&from=20&pid=&pev=2016&pho=02&pnap=&kat=1083&searchkey=&hol=&n=sarkadykati

43
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Linear models are not always interpretable

e Can human interpret a linear model with many features, each

with a floating number (normalized): e.g., feature 1 weighted
0.1, --feature 134 weighted 0.05, feature 201 weighted 0.8..

e "Probability distortion is that people generally do not look
at the value of probability unitformly between 0 and 1.
Lower probability 1s said to be over-weighted while medium
to high probability is under-weighted™ - Kahneman

I'M SO CONFUSED



Linear models are not always interpretable

e Can human interpret a linear model with many features, each

with a floating number (normalized): e.g., feature 1 weighted
0.1, --feature 134 weighted 0.05, feature 201 weighted 0.8..

e "Probability distortion is that people generally do not look
at the value of probability unitformly between 0 and 1.
Lower probability 1s said to be over-weighted while medium
to high probability is under-weighted - Kahneman

‘ Take away: :
| Using linear model isn't always the answer.

'l SO CONFUSED



. — e \ -.-.- —— . .
\ L T . gy T
= ® A“.'. , 0-“".’
S . - - .— e T - e
- - « =




Pursuing causality is great, but it s not always simple

e [t Is one of the areas of huge importance, no doubt about that!

« But (currently) it often comes with a lot of assumptions (e.g., no hidden

confounders) that starts to matter for high dimensional real-world
applications.

« "Without causality, explanation is meaningless -> |'d rather have useful,
well-validated explanation than nothing at all for high stake applications.

Causal Inference for the Causal Inference for The Brave and True

Brave and True

A very intuitive (and funny) =% o
tutorial on causal inferencel

01 - Introduction To Causality
https://matheusfacure.github.io/ 02- Randorised Experiments
3 - Stats Review: The Most Dangerous
Equation
04 - Graphical Causal Models
05-Th ble Eff f

Linear Regression
06 - Grouped and Dummy Regression
oooooooooooooooooooo

08 - Instrumental Variables
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Some explanation methods Tails a simple sanity check.

Input Image

. prediction
A trained

— machine learning model| — p(Z)

(e.g., neural network)
Junco Bird-ness

Given a fixed model, find
the evidence of prediction.

Why was this a Junco bird?

Sanity Checks for Saliency Maps

20 Joint work with Adebayo, Gilmer, Goodfellow, Hardt, [NIPS 18]


http://healthtap.com

Some explanation methods fails a simple sanity check.

Input Image

. prediction
A trained

— machine learning model| — p(Z)

(e.g., neural network)
Junco Bird-ness

One definition of
Given a fixed model, find explanation:

the evidence of prediction.
P — Tell me how sensitive

the prediction is when
Why was this a Junco bird? we slightly change

each input feature

(pixel).

Sanity Checks for Saliency Maps

o Joint work with Adebayo, Gilmer, Goodfellow, Hardt, [NIPS 18]


http://healthtap.com

One of the most popular interpretability methods for images:

Saliency maps

Input Image

. prediction
A trained

— machine learning model —l p(,Z)

(e.g., neural network)
Junco Bird-ness

In jargon: take derivative of the prediction wrt each One definition of

explanation:

pixel.
kit alogit — ap(z) Tell me how sensitive
"!3#‘5' pixeli,j — (‘9:1’--2;, j the prediction is when
‘“‘f.r' y In English: take one pixel in the image, and imagine we slightly change
| | changing it by a little. See how much prediction each input feature
changes. Do this for all pixels. (pixel).

Picture from SmoothGrad [Smilkov, Thorat, K., Viégas, Wattenberg '17]



One of the most popular interpretability methods for images:

Saliency maps

Input Image

—_—

rediction
A trained P

machine learning model — p(Z)

(e.g., neural network)
Junco Bird-ness

Popular method #1 Popular method #2 My work from 2018 #1

gy "

o B .
' A » P a

My work from 2018 #2  Popular method #3 Popular method #4
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A sanity check guestion:

Input Image

. prediction
A trained

— machine learning model| — p(Z)

(e.g., neural network)
Junco Bird-ness

So these pixels are the evidence of prediction. g(prediction) = explanation

. \;'% a o o . . . . , . ,
ﬁ.!%?pg When prediction changes, the explanations will g(prediction’) = explanation
S probably change.
e JI'".',‘ :

When prediction is random, the explanations

really should change! g(random) != explanation ?

Sanity Checks for Saliency Maps
Joint work with Adebayo, Gilmer, Goodfellow, Hardt, [NIPS 18]



A sanity check results

Original Image Salier,lf:y rpap
B K" class H"
e o>
272217
Randomized weights!
Original Image Network now makes garbage prediction.

Sanity Checks for Saliency Maps
Joint work with Adebayo, Gilmer, Goodfellow, Hardt, [NIPS 18]



A sanity check results

Input Image

rediction
A trained P

— machine learning model| — p(Z)

(e.g., neural network)
Junco Bird-ness

Popular method #1 Popular method #2 My work from 2018 #1
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Sanity check 1: Explanations from random vs trained network

Most of methods produce guantitatively and gualitative similar results

Cascading randomization
from top to bottom layers

—_—)

Original Image

d 7c
d 6d
d 5b

mixe

mixe

conv2d 2b 3x3

Original Explanation
® © ¢ © © o o o
mixed 7b

mixed 7a

mixed 6e
mixed_6¢c

mixed 6b

mixed 6a

mixed 5d
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conv2d 3b 1x1
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conv2d 1a 3x3
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Sanity check 2: Network trained with random vs true labels
Most of methods produce guantitatively and qualitative similar results
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Sanity Checks for Saliency Maps
Joint work with Adebayo, Gilmer, Goodfellow, Hardt, [NIPS 18]



Explanations can be (easily) attacked!

Interpretation of Neural Networks is Fragile

Abubakar Abid* James Zou'
Dept. of Electrical Engineering
Stanford University

al2d @stanford.edu

Amirata Ghorbani*
Dept. of Electrical Engineering
Stanford University
amiratag @stanford.edu

Stanford University
jamesz@stanford.edu
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“Llama” : Confidence 55.4

Integrated Gradients
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DeepLIFT

“Monarch” : Confidence 99.9 Feature-Importance Map
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“Llama” : C9r1ﬁdence 711

Original

Feature-Importance Map Feature-Importance Map

Perturbed

(@) (b)

Figure 1: Adversarial attack against feature-importance maps. We generate feature-importance scores, also
maps, using three popular interpretation methods: (a) simple gradients, (b) DeepLIFT, and (c) integrated grag
row shows the the original images and their saliency maps and the bottom row shows the perturbed images (y
attack with e = 8, as described in Section[3)) and corresponding saliency maps. In all three images, the predicte
change from the perturbation; however, the saliency maps of the perturbed images shifts dramatically to features
be considered salient by human perception.
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Explanations can be manipulated
and geometry is to blame
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THE (UN)RELIABILITY OF SALIENCY METHODS
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Approximated explanations can be and will be wrong sometimes

A number of methods “approximates models behavior in some way. This

means, there will be errors.

Sometimes it's just plain wrong (e.g.,

Figure 3: Toy example to present intuition for LIME.
The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink
background, which cannot be approximated well by
a linear model. The bold red cross is the instance
being explained. LIME samples instances, gets pre-
dictions using f, and weighs them by the proximity
to the instance being explained (represented here
by size). The dashed line is the learned explanation
that is locally (but not globally) faithful.

not robust to distributional shifts)

On the Robustness of Interpretability Methods

Lipshitz Estimate

David Alvarez-Melis! Tommi S. Jaakkola '
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Published as a conference paper at ICLR 2021

INFLUENCE FUNCTIONS IN DEEP LEARNING
ARE FRAGILE

Samyadeep Basu,; Phillip Pope *& Soheil Feizi
Department of Computer Science
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Figure 1: Iris dataset experimental results - (a,b) Companson of norm of parameter changes com-
puted with influence function vs re-training; (a) trained with weight-decay; (b) trained without
weight-decay. (c) Spearman correlation vs. network depth. (d) Spearman correlation vs. network
width.




Approximated explanations can be and will be wrong sometimes

« A number of methods "approximates models behavior in some way. This

means, there will be errors.

« Sometimes it s just plain wrong (e.g., not robust to distributional shifts)

Figure 3: Toy example to present intuition for LIME.
The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink
background, which cannot be approximated well by
a linear model. The bold red cross is the instance
being explained. LIME samples instances, gets pre-
dictions using f, and weighs them by the proximity
to the instance being explained (represented here
by size). The dashed line is the learned explanation
that is locally (but not globally) faithful.
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Take away:

' Always skeptical about the explanations you get.







Oh, come on.
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"How™ explanations are presented is as important as the explanations themselves.
Knowing how that impacts users is even more important

Interpreting Interpretability: Understanding Data Scientists’
Use of Interpretability Tools for Machine Learning

Harmanpreet Kaur', Harsha Nori’, Samuel Jenkins?, [Submitted on 22 Oct 2020]
Rich Caruana’, Hanna Wallach?, Jennifer Wortman Vaughan’ L o . L
'University of Michigan, Microsoft Research Towa rd S fal S |f| a b I eéin te rp re ta b i I i ty researc h

harmank @umich.edu, {hanori,sajenkin,rcaruana,wallach,jenn } @microsoft.com

Matthew L. Leavitt, Ari Morcos

“Our results indicate that data scientists over-trust and misuse illustrative power of visualization is a double-edged sword:

interpretability tools. Furthermore, few of our participants were able to an evocative graphic can elicit a strong feeling of

accurately describe the visualizations output by these tools.”
comprehension regardless of whether the graphic faithfully

represents the phenomenon it is attempting to depict.”

Misuse and Disuse
Most participants relied too heavily on the interpretability
tools. Previous work categorizes such over-use as misuse [17,
52]. Here, the misuse resulted from over-trustlng the tools
because of their visualizations; participants were excited
about the visualizations and took them at face value instead of
using them to dig deeper into issues with the dataset or model:




"How™ explanations are presented is as important as the explanations themselves.
Knowing how that impacts users is even more important

Interpreting Interpretability: Understanding Data Scientists’
Use of Interpretability Tools for Machine Learning

Harmanpreet Kaur', Harsha Nori’, Samuel Jenkins?,
Rich Caruana’, Hanna Wallach?, Jennifer Wortman Vaughan’

'University of Michigan, *Microsoft Research
harmank @umich.edu, {hanori,sajenkin,rcaruana,wallach,jenn } @microsoft.com

“Our results indicate that data scientists over-trust and misuse
interpretability tools. Furthermore, few of our participants were able to
accurately describe the visualizations output by these tools.”

Misuse and Disuse

Most participants relied too heavily on the interpretability
tools. Previous work categorizes such over-use as misuse [17,
52]. Here, the mlsuse resulted from over-tmstlng the tools

about the visualizations and took them at face value insicad of
using them to dig deeper into issues with the dataset or model:

, Take away: |
| Human factors is tricky but important.

[Submitted on 22 Oct 2020]

Towards falsifiable interpretability research

Matthew L. Leavitt, Ari Morcos
“illustrative power of visualization is a double-edged sword:

an evocative graphic can elicit a strong feeling of

comprehension regardless of whether the graphic faithfully

represents the phenomenon it is attempting to depict.”



Agenda

« What and why

e ICaution!: Things to be careful when using and developing interpretability
methods

)+ Evaluate: How to evaluate interpretability methods

"z:?%:% « Methods: 3 types of methods and examples



We Can Do It!

Evaluation - yes you can.

e [esting with ho humans, proxy task

e Testing with humans, proxy task

. Testing with GHAHAREANNEER




no humans, proxy task

Using ground truth dataset and Sanity check

e |dea: Test the obvious

1. Test hypothesis that should be true by craft a ground-truth dataset

2. Test hypothesis that should be true using results on real dataset

3. Do sanity check: often testing hypothesis that should NOT be true.

a.K.a. as crazy questions.



no humans, proxy task

1: Test hypothesis that should be true by craft a ground-truth dataset

Forest

-
w 4

A thing

Benchmarking interpretability methods (BIM)

github.com/google-research-datasets/bim



https://www.google.com/url?q=https://github.com/google-research-datasets/bim&sa=D&source=hangouts&ust=1560569851143000&usg=AFQjCNG_H-Pxm9-JmKVNHtwduSw2Xo8Pfg

no humans, proxy task

1: Test hypothesis that should be true by craft a ground-truth dataset

Forest

Forest

AN Bedroom
A thing 49

Kitchen

Benchmarking interpretability methods (BIM)

github.com/google-research-datasets/bim
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no humans, proxy task

1: Test hypothesis that should be true by craft a ground-truth dataset

A4 is NOT important for

predicting scene classes.
&, nd

AL

'S l

4 should NOT

Wt

Be part of explanation

Forest

Forest

?‘3‘\;}“ Bedroom
A thing "

Kitchen

Benchmarking interpretability methods (BIM)

github.com/google-research-datasets/bim
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no humans, proxy task

1: Test hypothesis that should be true by craft a ground-truth dataset

A4 is NOT important for

predicting scene classes.
.
LA

'S 4 l

4 should NOT

o

Forest

Forest Be |5art of explanation

e Bedroom We can also make

A thing
A~ more important
to some classes by

1

-~ 4 should be more important

~ i
et
f

Kitchen s
explanation in some classes

Benchmarking interpretability methods (BIM) than others.

github.com/google-research-datasets/bim
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no humans, proxy task

1: Test hypothesis that should be true by craft a ground-truth dataset

Model’s truth

important |Not important

nterp. | important TP LFP - Our Focus: False positives
methods | S
estimates |Not Important| ~ FN TN

Benchmarking interpretability methods (BIM)

github.com/google-research-datasets/bim
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no humans, proxy task

1: Test hypothesis that should be true by craft a ground-truth dataset

Model’s truth

important |Not important

Interp. | important TP CFP 3 Our Focus: False positives
methods : gl
estimates |Not Important, ~ FN TN

Suggested metrics

* Model contrast score (MCS)

* Input dependence rate (IDR)

* Input independence rate (lIR)

Benchmarking interpretability methods (BIM)

github.com/google-research-datasets/bim
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no humans, proxy task

1: Test hypothesis that should be true by craft a ground-truth dataset

Model’s truth

important | Not important

e ool Bl P L FP - Our Focus: False positives
methods _ S|
estimates |Not Important, ~ FN TN

Two models trained to classity scenes.
Suggested metrics

* Model contrast score (MCS) g Model 1

* Input dependence rate (IDR)
* Input independence rate (lIR)

Benchmarking interpretability methods (BIM)

github.com/google-research-datasets/bim
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no humans, proxy task

1: Test hypothesis that should be true by craft a ground-truth dataset

Model’s truth

important |Not important

Interp. | important TP ’ FP  <
methods _ S|
estimates [NOt Important|  FN TN

Our Focus

Two models trained to classity
Scene model

Suggested metrics

* Model contrast score (MCS)
* Input dependence rate (IDR)
* Input independence rate (lIR)

\4

We expect
big contrast
on where

the object is.
Benchmarking interpretability methods (BIM)

github.com/google-research-datasets/bim
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no humans, proxy task

1: Test hypothesis that should be true by craft a ground-truth dataset

B Original M Robust Baseline W TCAV

0.5 0.5

)

S 0.4 0.4 §
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0 0

Benchmarking interpretability methods (BIM)

github.com/google-research-datasets/bim 78



https://www.google.com/url?q=https://github.com/google-research-datasets/bim&sa=D&source=hangouts&ust=1560569851143000&usg=AFQjCNG_H-Pxm9-JmKVNHtwduSw2Xo8Pfg

no humans, proxy task

1: Test hypothesis that should be true by craft a ground-truth dataset

® Original @ Robust Baseline W TCAV
0.5 0.5

o
S
=
N

yast score
ftrast score

i ©
j w
o
W

Bedroom .-

Take away:

;';A A I You can craft a synthetic dataset for your domain (e.g., sequential,

i N tabular). Add typical challenges you may encounter.

Kitchen

There is no point testing with humans if the method doesn't pass
these tests.

Benchmarking iNterpretability METhOAS Nrmaspeasrsssssmmsssoasrmssssmminsssmsmssetos s s semsssios s e s e

github.com/google-research-datasets/bim 79
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no humans, proxy task

2: Test hypothesis that should be true using results on real dataset

Automatic Concept-based Explanations (ACE)
[Ghorbani et al. NeurlPS 19]

B K™ class

0.8
07 .!}
N TN

0.4 \ ‘ E !

(a) Segment images

(b) (smart) cluster segments (c) evaluate discovered concepts

80



no humans, proxy task

2: Test hypothesis that should be true using results on real dataset

Automatic Concept-based Explanations (ACE)
[Ghorbani et al. NeurlPS 19]

Adding top-rated patches Deleting top-rated patches
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no humans, proxy task

2: Test hypothesis that should be true using results on real dataset

Real Time Image Saliency for Black Box Classifiers

Piotr Dabkowski Yarin Gal | !
pd437@cam . aC . uk yar in . gal@eng . Cam . aC . u.k | (a) Input Image (b) Generated saliency map (C) Image multiplied by the mask y inverted mas!
Univcr Slty Of Cambl’ldgc Univcr Sl[y Of Cmnbndgc Figure .l: An exal}lple of explanations produced by our quel. The top row shows the explanation for. the
and Alan Turing Institute, London e ey e Mt e

smallest sufficient region (SSR) - smallest region of the image that alone allows a confident classification.

We propose to find the tightest rectangular crop that contains the entire salient region and to feed that
rectangular region to the classifier to directly verify whether it is able to recognise the requested class.

We define our saliency metric simply as:
s(a,p) = log(a) — log(p) (3)
Lower is the better:

Localisation Err (%) Saliency Metric

Ground truth boxes (baseline) 0.00 0.284

Max box (baseline) 59.7 1.366 . . .

Center box (baseline) 46.3 0.645 Relative amount of information between
Grad [11] 41.7 0.451 . . . .
Exc [16] 39.0 0.415 p and a (concentration of information in
Masking model (this work) 36.9 0.318

the cropped region)
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no humans, proxy task

3: Do sanity check: often testing hypothesis that should NOT be true.
a.kK.a. ask crazy guestions.

Original Image

M K™ class
272217
Randomized weights!
Original Image Network now makes garbage prediction.

83



no humans, proxy task

3: Do sanity check: often testing hypothesis that should NOT be true.
a.kK.a. ask crazy guestions.

Sanity Checks for Saliency Metrics

The internal consistency of different metrics that all attempt to

measure fidelity was low

Mean perturbation
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no humans, proxy task

3: Do sanity check: often testing hypothesis that should NOT be true.
a.kK.a. ask crazy guestions.

Sanity Checks for Saliency Metrics

Richard Tomsett,'* Dan Harborne,”* Supriyo Chakraborty,’ Prudhvi Gurram,* Alun Preece’

'Emerging Technology, IBM Research, Hursley, UK
2Crime and Security Research Institute, Cardiff University, Cardiff, UK
3IBM Research, Yorktown Heights, NY, USA

4Booz Allen Hamilton and CCDC Army Research Laboratory, Adelphi, MD, USA
rtomsett @uk.ibm.com, harborned @cardiff.ac.uk, supriyo@us.ibm.com, gurram_prudhvi @bah.com, preecead @ cardiff.ac.uk

"Our results show that saliency metrics can be statistically unreliable

and inconsistent, indicating that comparative rankings between

saliency methods generated using such metrics can be untrustworthy.

1. Global saliency metrics had high variance

2. Sa
M

3. Sa

iency metrics were sensitive to the specitics of their
olementation

iency maps from different saliency methods were ranked

inconsistently image-by-image

4. The internal consistency of different metrics that all attempt to

measure fidelity was low
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Take away:
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: Being skeptical can be healthy and productive.




humans, proxy task

Testing with humans, proxy task

e |In a proxy task that maintains the essence of the final task (but likely
ground truth is known)

e with humans who may not be your idea users (e.g., doctors) but still can
help evaluating



humans, proxy task

Testing methods with users and concrete end-tasks

Training Data Model B :
B | /—\ S Model Prediction
i Wheaten . ! e e Sy Light
{ Y Terrier } Training - : Test-Time ' PR
Bugs at each stage
Labeling Errors : Reinitialized Weights E Out of distribution data
Spurious Correlation . Unintentional frozen layers o Mismatch in preprocessing

® Task for subjects: You work at a start-up selling animal classification ML model. Here
are the images, predictions and attribution maps. (We gave users prediction labels as it
Is unrealistic not to).

® Questions: Would you recommend this model? Why? [because the wrong/correct
label/explanation]? All in Likert scale.

87
[Adebayo, Muelly, Liccardi, K. Neurips 2020]



humans, proxy task

Can these methods tell us about

of distribution?
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humans, proxy task

/\ Test-Input
Can these methods tell us about Test-Time E

Out of distribution? probably not. —

N Out of distribution data
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humans, proxy task Training Data

Wheaten
Y Terrier

SpuriOUS COrrelation? Spurious Correlation

Can these methods tell us about
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humans, proxy task

Can these methods tell us about

Spurious correlation? maybe!
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humans, proxy task

Example: Evaluating discovered concepts with subjects

® Exp1l: Intruder test

Choose the image that is conceptually different. Choose the image that is conceptually different.

® Task: Identify an odd one out

® Discovered concepts: 99%, similar to

. hand-labeled dataset, 97%

. L ® ExpZ: Meaning test
Experiment 1: Identifyig intruder concept

Extracted
Hand-labeled

Look at the following two groups of segments. In each group, you should look at the top row. Each image in the top row is

a zoomed-in version of another image shown on the bottom row. Now the question is that which of the groups seems ® Ta SI(: Se | eCt betwee N d | Scove red
more meaningful to you.
concepts vs random segments and

Segment 3 Segment 4

Segment 4

Segment 1 Segment 2

Segment 1 Segment 2 Segment 3

name them.

® Correctly chosen 95% of time

Concept Segments
Random Segments

® 56% used the same name and 77%

Which groups of images is more meaningful to you? O right O left named the same or tOp two terms
If possible please describe the chosen row in one word. Your answer

(e.g., human, face)
Experiment 2: Identifying the meaning of concept

Automatic Concept-based Explanations (ACE)
92 [Ghorbani et al. NeurlPS 19]



humans, proxy task

Example: Evaluating discovered concepts with subjects

® Exp1l: Intruder test

Choose the image that is conceptually different. Choose the image that is conceptually different.
C

® Task: Identify an odd one out

® Discovered concepts: 99%, similar to

. hand-labeled dataset, 97%
® ExpZ: Meaning test

Experiment 1: Identifyig intruder concept

Extracted
Hand-labeled

1

Look at the following two groups of segments. In each group, you should look at the top row. Each image in the top row is

a zoomed-in version of another image shown on the bottom row. Now the question is that which of the groups seems ® Ta SI(: Se | eCt betwee N d | Scove red
more meaningful to you.
concepts vs random segments and

Segment 4 Segment 1 Segment 2 Segment 3 Segment 4

Segment 1 Segment 2 Segment 3

name them.

® Correctly chosen 95% of time

Concept Segments
Random Segments

® 56% used the same name and 77%

Which groups of images is more meaningful to you? O right O left named the same or tOp two terms
If possible please describe the chosen row in one word. Youranswer , | i , s o

‘ake away:
| Proxy task can be an effective way to evaluate a method
' (often) before running real experts on real tasks.

posmae =

Experiment 2: Identifying the meaning of co ‘




humans, real task
With humans on real tasks

“Explainable machine-learning predictions for the prevention of

“Human-Centered Tools for Coping with Imperfect Algorithms During Medical
hypoxaemia during surgery”

Decision-Making”

[Cai et al. 19 CHI] [Lundberg et al. 18 Nature biomedical engineering]

“The system, which was trained on minute-by-minute data from the

“In two evaluations with pathologists, we found that these refinement tools . . B
electronic medical records of over 50,000 surgeries, improved the

increased the diagnostic utility of images found and increased user trust in the

algorithm. The tools were preferred over a traditional interface, without a loss in performance of anesthesiologists by providing interpretable

diagnostic accuracy.” hypoxaemia risks and contributing factors.

Liver cancer patient with hepatitis C  Age: 57 BMI: 34 ASA Code: llI 15+ other attributes 20+ static features
100
ON"‘ \—__—_—/_/_\/r
o
Showing results 1 10 15 < PREV NEXT > % SE 90 1 POtentiaI
' ,, ADJUST BY 80 — desaturation region
. R & -;- h NG ¥ | . ! ¢ & Gleason Normal 3 of 3 pinned images will be used ()
. 5 e ol to refine the search ) g 1 | 45 d g f t
¢ selectall | removeall = ynamic teatures
S= 05- = \
3 0-
e .
43 other patient time series features
8 Other factors Normal pulse  Low tidal volume High BMI 5 min Explanation
75 b.p.m. 0.21 30 odds ratio

Eosin staining \. i
. 4 al N/ N
Cd

Prediction window

+

ignore concept

Hematoxylin staining oo
. — 2 2.4 Prediction J\'

ignore concept

Prescience

Odds ratio
(current odds/typical odds)

Figure 2: Key components of SMILY: a) the query image (e.g. pathology tissue possibly containing cancer), b) the search results 05 {i’g

(images from previously diagnosed cases), c) refine-by-region tool: users crop a region to emphasize its importance, d) refine- Anaesthesia ready Vgl P

by-example tool: for clinical concepts that can’t be pinpointed to a specific region (e.g. visual patterns), users can pin examples —201 Bimin —10 min —5 min Now +5 min
from search results to emphasize that concept, e) refine-by-concept tool: users increase or decrease the presence of clinical ) :

concepts by sliding sliders. Procedure history Procedure future

Fig. 1| Prescience integrates many data sources into a single risk, which is explained through a succinct visual summary. A wide variety of data sources
were used to build a predictive model of hypoxaemia events. An explanation (overlaid) is then built for each prediction. Pink features have values that
increased risk, whereas green features decreased hypoxaemia risk. The combination of the impacts of all features is the predicted Prescience risk; in

this case, the odds are 2.4 X higher than normal. Each feature impact value represents the change in risk when the value of that feature is known versus
unknown. Qualitative terms such as ‘low’ or ‘high" are based on the distribution of a feature value in our dataset.



Agenda

« What and why

e ICaution!: Things to be careful when using and developing interpretability
methods

)+ Evaluate: How to evaluate interpretability methods

"z:?%:% « Methods: 3 types of methods and examples



Again, it's not all about deep learning.
Interpretability isn't a new problem.

e Lots of pre-deep learning work going all the way back to 70 s.

By typing WHY, the user gets a detailed explanation from the system of the type of

MYCIN OVERVIEW conclusion it 1s trying to draw, and how the current rule 1s to be applied in this case

to establish that conclusion.

CSTART) In l:gh'l of the site from which the culture was obtained. and the method of
collection, do you feel that asignificant number of ORGANISM-1 were obtained ?
WY
Yeuince Pece [1.0] Ttis important to find out whether there is therapeutically significant disease
CLINICAL Subprogram 1 Knowledge assoctated with this occurrence of ORGANISM-|
Ilt\EJFORMATION CONSULTATION CORPUS OF [t has already been established that:
THE PHYSICIAN [1.1]  the site of the culture is not one of those which are normally sterile.
o and
[1.2] the method of collection is sterile
ONBE‘;U[\;I(};CRDEHC};HD Subprogram 2 Subprogram 3 ;
- RULE-ACQUISITION |
OF THE CURRENT EXPLANATION iy " Good reference
SYSTEM FOR USE |
CONSULTATION BY EXPERTS
C Exl” ) Comprehensible Classification Models — a position paper
Alex A. Freitas
School of Computing
University of Kent

Canterbury, CT2 7NF, UK

[Shortliffe et al. 1975]



Types of interpretability methods

-.' Explaining data argmax (Q(Explanation|Human, Data, Task)
E

ﬁ (3 argmax (Q(Explanation, Model|[Human, Data, Task)

E,M

Building inherently interpretable model

My ML

Post-training interpretability methods

argmax ()(Explanation|Model, Human, Data, Task)
E



Interpreting data (not just the model) is important.

 Exploratory data analysis:

e "an approach of analyzing data sets to summarize their main

characteristics, often using statistical graphics and other data
visualization methods. [It] is for seeing what the data can tell us

beyond the formal modeling or hypothesis testing task. °

https://en.wikipedia.org/wiki/Exploratory_data_analysis
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Before building any model - Descriptive statistics

' - mean(

mean(

std(
std( <

— — X{)
N—"

"~ 1 Class0
¥ Classt
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Before building any model  Descriptive statistics

o ' ~ mean(

mean( <
std(
std( <

v

"~ 1 Class0
¥ Classt

101



x,

Before building any model

Exploratory data analysis

KMeans, KNN

¥ Observed |
data [Simon et al., '07]

[Lin and Bilmes, '11]
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x,

Before building any model

Exploratory data analysis

KMeans, KNN

¥ Observed |
data [Simon et al., '07]

[Lin and Bilmes, '11]
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Before building any model

-

- Exploratory data analysis

' Criticism 1

' Criticism 2 . XXX ) 4

¥ Observed

data
MMD-critic [K. Khanna, Koyejo '16]
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Before building any model

-

- Exploratory data analysis

“* Fit distribution P
(prototypes) that best
fit the data points

 Criticism 1 (AR

' Criticism 2 . XXX ) 4

¥ Observed

data
MMD-critic [K. Khanna, Koyejo '16]
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Before building any model
l' Exploratory data analysis

“* Fit distribution P
(prototypes) that best
fit the data points

.

: Cfritic‘:isrr? 1 e Xxx

' Criticism 2 XXX p 4
] ‘ Fit distribution g
e (criticisms) the

difference between

¥ Observed .
data data points and p
MMD-critic [K. Khanna, Koyejo '16]

106




- iBefore building any model

Exploratory data analysis

Prototype 1 |

X %
XX

| Criticism 1

Cri‘tic‘:is “ .‘ xxx

¥ Observed
data

MMD-critic [K. Khanna, Koyejo '16]
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Before building any model

-

- Exploratory data analysis

Prototypes Prototypes
-~ : = $~ v

-

MMD-critic [K. Khanna, Koyejo '16]



Before building any model

Exploratorv data analysis

Great overview of many
exploratory data analysis,
highly recommenda.

Communicating with
Interactive Articles

Examining the design of interactive articles by synthesizing theory from disciplines
such as education, journalism, and visualization.

https://distill.pub/2020/
communicating-with-interactive-
articles/
e

-

Journalism

Journalism OPPORTUNITIES

* Tell stories from multiple dynamic perspectives and

An informed public strengthens society. While many newsworthy and current levels of detail

events are reported daily, unfortunately the complexity and nuance of such * Highlight importance of a story or report

topics are lost in the wildfire sharing of short headlines. This is effective * Improve reader comprehension of stories

dissemination without context. Yet many of the most impactful stories require CHALLENGES

a deep understanding of the various locations, personale, and perspectives * Require active reading in a reader that may be
expecting bite-sized news

involved. Interactive articles can be used to break down these complex topics

N . . . . . . . i i i i i
into more approachable pieces, show their connections in relation to the main Many regders viewing'on moblie devices requires
< responsive design

message, highlight the impact of investigative reporting, and inform a wide « Difficult to produce at the fast pace of news cycles

readership of current events and impactful stories.

Faramntin
Frem

FIGURE 1: Exemplary Interactive Articles From Around The Web. Select an article for more information.

- Seoe for Yoursell

! !
!'1", |

I

U !! yu

What's Really Warming the World? [16]

A segmented-story that layers different natural and
industrial factors recorded since 1880 on the same
axis to compare and contrast which factors are
correlated with the increase of the global
temperature rise.

AUTHORS AFFILIATIONS 'UBLISHEL DOl

Fred Hohman Georgia Tech Sept. 11, 2020 10.23915/distill.00028

Matthew Conlen University of Washington
Jeffrey Heer University of Washington

Duen Horng (Polo) Chau Georgia Tech

You Draw It: How Family Income Predicts

The Uber Game [18]

Children's College Chances [17]

An article with a partially complete visualization
that prompts the reader to draw the trendline that
completes the relationship between family income

and the percentage of children who attend college,

challenging one's prior belief about the data.

A choose-your-own-adventure narrative news
game that puts the reader behind the wheel and
explores the economics and life of being an Uber
driver.



Types of interpretability methods

-. » Explaining data argmax ()(Explanation|Human, Data, Task)
E

- Building inherently interpretable model
[ argmax () (Explanation, Model|Human, Data, Task)
) E,M
Model == explanation
My ML

No approximation needed

Post-training interpretability methods

argmax ()(Explanation|Model, Human, Data, Task)
E
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B Building a new model

AR
AN
K
v

0.3

"3 ClassO .2 0.3
»# Classt
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LJQBUHding a new model

f2 4

0.2

_} ClassO
¥ Classt
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;jQBquing a new model

g o 8
W e
E >~ e
)
v

0.2

™} Class0
¥ Classt
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y= Bo+ B1x1 + ... + Brnxn
g(y) = :80 g )61331 T smsos S ;ann

9(y) = fi(z1) + ... + fn(zn)
g(Ely]) = D _ films) + ) fij (i, z5);

¥ Class




f2

0.2

ClassO
¥ Class1

0.4

116

0.6

1

[Frey, Dueck '10]

[Yen, Malioutov , Kumar '16]
[Arnold , El-Saden , Bui, Taira '10]
[Floyd , Aha '16]

[Homem, et al. '16]

[Jalali, Leake "15]

[Reid , Tibshirani '16]

[K. Rudin, Shah "16]

[Koh, Liang "17]


https://www.guidedogs.org/
http://www.petfinder.com

f2

0.2

T S VI S ISR CarwSpUepaers———— ‘ [Frey, Dueck '10]
: [Yen, Malioutov , Kumar '16]
f1 [Arnold , El-Saden , Bui, Taira '10]

ClassO 0.4 0.6 [Floyd , Aha '16]

[Homem, et al. '16]
[Jalali , Leake '15]

¥ Class [Reid , Tibshirani '16]

[K. Rudin, Shah "16]
147 [Koh, Liang "17]



https://www.guidedogs.org/
http://www.petfinder.com
http://www.petfinder.com

f2

Blackbox

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural
e Networks

Jonathan Frankle, Michael Carbin

A randomly-initialized, dense neural network contains a subnetwork that is initialized such that —

hen trained in isolation — it can match the test accuracy of the original network after training fo

X C lass at most the same number of iterations.’

118


https://www.guidedogs.org/

Types of interpretability methods

-.' Explaining data argmax (Q(Explanation|Human, Data, Task)
E

ﬁ (3 argmax (Q(Explanation, Model|[Human, Data, Task)

E,M

Building inherently interpretable model

My ML

Post-training interpretability methods

argmax ()(Explanation|Model, Human, Data, Task)
E
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_After building a model

ClassO

Class™
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_After building a model

Marginalize out this
feature!

ClassO i1
¥ Classi
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p ._fter building a model

ClassO
¥ Classi

123



g After building a model

444444

ClassO L
¥ ClassT |
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_After building a model




| '._fter building a model

Want local explanation

of the = data point

Locally fitted linear
function



e After building a model

Ablation test: train without that feature/data and see the impact
Sensitivity analysis/fitting linear function/

gradient-based

Integrated gradients [Sundararajan et al. 17/]

Top label: starfish
Score: 0.999992

SmoothGrad [Smilkov et al. 17]

Gradient SmoothGrad

[Zeiler et al. "13] [Selvaraju et al. 16]

[Erhan 2009] [Springenberg, ‘14] [Shrikumar '17] and many more..


https://scholar.google.com/scholar?q=Visualizing+higher-layer+features+of+a+deep+network&btnG=&hl=en&as_sdt=0%2C22
https://arxiv.org/find/cs/1/au:+Springenberg_J/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Shrikumar_A/0/1/0/all/0/1

g After building a model

Figure 2: From left to right: the input image; smallest sufficient region (SSR); smallest destroying region (SDR).
Regions were found using the mask optimisation procedure from [3].

e Smallest sufficient region (SSR) — smallest region of the image that alone allows a confident
classification,

e Smallest destroying region (SDR) — smallest region of the image that when removed,
prevents a confident classification.

flute: 0.9973 flute: 0.0007 Learned Mask

Figure 1. An example of a mask learned (right) by blurring an
image (middle) to suppress the softmax probability of its target
class (left: original image; softmax scores above images).

in A1 - X \V/ g
i 1|1 —mlf; zgll m(u)||

+ E [fo(®(z0o(- — 7),m))],



o After building a model
Op(x) _ 9p(z)

f2

arg min mf,x Mfuw(z') — y')2 + d(z;, 2')
wl

Cralw2) = 1 [y = argmax MO/ | 2)| - ¥y | 2),

Plausibility Diversity

Model f Fo:nula For:;mla
(as program) % \— "T
Counterfactual
Input —{\C&_ile—r—-» Formula SMT Solver —— Counm‘ factual

(z,7) Por, ()

| Distance
Compiler —— Formula

Dda

Distance d
(as program)

Figure 1: Architecture Overview for Model-Agnostic Counterfactual Explanations (MACE)



o After building a model
Op(z) _ 9p()

f2

Definition 1 Additive feature attribution methods have an explanation model that is a linear
function of binary variables:

M
9(2') = ¢o + ) _ iz, (1)
ge=1

(A) Input  Explain8 Explain3 Masked

Orig. Deeplift

New Deeplift







O-th order or 1-st order derivatives could lead to very different intuition

Which feature is dominant (0-th order derivative)

e feature x1 Is important distinction between class y=1

and y=0 for both blue curve and gree

N curve.

Which feature is sensitive (1-th order derivative)

e feature x1 Is important distinction be

'ween class y=1

and y=0 for green curve (dy/dx > 0),

curve (dy/dx1=0).

out not for blue

Neither represents causal relationship (of course)

What you think you want may not be wh
Test with the end-task.

at you need! ->

X



That's all good. What could go wrong?

Local explanations

L

AR
F o
I 2 )
v
3
"

Two layer neural network

. with two features (green and purple).
} ClassO Highly unstable explanations
¥ Class in small neighborhoods

[Alvarez-Melis 18]



_After building a model

ClassO
¥ Classi




Problem:
Post-training explanation

argmax ()(Explanation|Model, Human, Data, Task)
L

A trained

== machine learning mode| === p(z)

(e.g., neural network)

popularity

Why was this a
popular pizza?

TCAV [ICML’18]
135 Joint work with Wattenberg, Gilmer, Cai, Wexler, Viegas, Sayres


http://healthtap.com

Problem:
Post-training explanation

ar%max () (Explanation|Model, Human, Quantitative explanation:

how much a -

(e.g., gender, race)
was important for a prediction in a
trained model.

...even if the -

popularity was not part of the training.

4 A trained
e === machine learning model| === p(Z)

e
: (e.g., neural network)

Why was this a
popular pizza?

TCAV [ICML’18]
136 Joint work with Wattenberg, Gilmer, Cai, Wexler, Viegas, Sayres


http://healthtap.com

TCAV: Testing with Concept Activation Vectors

A trained .
machine learning model 1 )( 2 )
(e.g., neural network)

zebra-ness

I LA

How important was the striped concept
to this zebra image classifier?

137 [K., Wattenberg, Gilmer, Cai, Wexler, Viegas, Sayres ICML 2018]



TCAV: Testing with Concept Activation Vectors

g .
%(/((fa maching Iterz;:ier?g model p (‘Z )
4

A
” (e.g., neural network)
@

zebra-ness
T I -

How important was the striped concept

| | - TCAV
to this zebra image classifier?

1. Learning CAVs

=\ 1. H fin
M) @) ) ow to define

hEN ) concepts
Vo -\fz ()

TRt
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Detining concept activation vector (CAV)

Inputs:

Examples ot

concepts £, R" — R™

. “\I Illlﬂ ?% — .. | o M K™ class
WP .

Random

\\‘

images A trained network under investigation
and

Internal tensors

139



Detining concept activation vector (CAV)

Inputs:

. lHH |H mlnlm = = ::_ L o B Kt class
Wy :

D B @D e
J1

=) /1 (o)
i) A/ AN

| Vo il )
CAV (’Ul(;) is the vector f [ (MI“W> 1 ( \ f 1 (@)

orthogonal to the decision

boundary.
[Smilkov ‘17, Bolukbasi ‘16 , Schmidt '15]

Train a linear classifier to
separate activations.

140



TCAV:

Testing with Concept Activation Vectors

7 .
%(@ maching Iterz;:ier?g model
4

A
” (e.g., neural network)
@

W

How important was the striped concept

, | - TCAV
to this zebra image classifier?

1. Learning CAVs 2. Getting TCAV score

" f)'/ ) @ [i6eF) L ({%}) 5C k1 (6%(@ )
JI\= _ T ( B,
i) A/l\‘ | g Sck,i(64 ) TCAVQe k1 -

. Vo \fl(é)
WD ;o 7@ ser (@)

p(2)

zebra-ness

2. How are the CAVs
useful to get
explanations?



TCAV core idea:
Derivative with CAV to get prediction sensitivity

TCAV

TCAV score

|
dotted striped zig-zagged

= eI

zebraness —  Op(z)

= Sok(T)

Directional derivative with CAV
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TCAV core idea:
Derivative with CAV to get prediction sensitivity

TCAV

TCAV score

=]
dotted striped  zig-zagged

eBfEness — Op(z) _ o (@)
l T Y
T

Directional derivative with CAV
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TCAV core idea:
Derivative with CAV to get prediction sensitivity

TCAV

TCAV score

dotted striped zig-zagged

zebraness — Jp(z)

= Sok(T)

Directional derivative with CAV
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et (T )
cri(d4 ) -
’

c,k,z(%)
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In a very high dimensional space...
funky things can happen.
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Quantitative validation:

Guardmg against spurious CAV

g
Zebra TCAV score
random
> TCAVQC’]%Z : \
§Z
Z
-
= E g
> TCAVQC,]{’Z : l I
*
g TCAVQC’;{’Z :

Check the distribution of
» TCAVQc 1 TCAVQe . is statistically
different from random

using t-test

146



Results

1. Sanity check experiment

cab image cab image with caption

2. Biases in Inception V3 and GoogleNet

3. Domain expert confirmation from Diabetic Retinopathy

DR level 4 Retina TCAV for DR level 4

9
7
Q

PRP  PRHNVH  NV/FP VB
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Q@‘&’ Results

1. Sanity check experiment

cab image cab image with caption

2. Biases in Inception V3 and GoogleNet

3. Domain expert confirmation from Diabetic Retinopathy

DR level 4 Retina TCAV for DR level 4

08

07
e 0.6
o

305

> 04
S 0.3
0.1
0.0

PRP  PRH/VH  NV/FP VB
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Global and Local Interpretability
for Cardiac MRI Classification

James R. Clough, Ilkay Oksuz, Esther Puyol-Antén, Bram Ruijsink,
Andrew P. King, and Julia A. Schnabel

Interpreting a jointly trained
School of Biomedical Engineering & Imaging Sciences, King’s College London, UK VAE+classification model.
james.clough@kcl.ac.uk

CAV |Description | Vi-ve>0 |[(Vi-v.)
Low EF Ejection Fraction 78.2% 0.0417
Low PER Peak Ejection Rate 88.8% 0.0770
Low PFR Peak Filling Rate 99.6% 0.1560
Low APFR |Atrial Peak Filling Rate 58.2% 0.0048
High LVT  |Variance of LV wall thickening 63.4% 0.0156

Table 1: The sensitivity of the classifier to clinical biomarkers of poor cardiac
health. A biomarker with no relevance would have V,y - v. = 0 on average.




Global and Local Interpretability
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CAV |Description | Vi-ve>0 |[(Vi-v.)
Low EF Ejection Fraction 78.2% 0.0417
Low PER Peak Ejection Rate 88.8% 0.0770
Low PFR Peak Filling Rate 99.6% 0.1560
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health. A biomarker with no relevance would have V,y - v. = 0 on average. n u u
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Global and Local Interpretability
for Cardiac MRI Classification

James R. Clough, Ilkay Oksuz, Esther Puyol-Antén, Bram Ruijsink,
Andrew P. King, and Julia A. Schnabel

Interpreting a jointly trained
School of Biomedical Engineering & Imaging Sciences, King’s College London, UK VAE +classification model.

james.clough@kcl.ac.uk

CAV |Description | Vi-ve>0 |[(Vi-v.)
Low EF Ejection Fraction 78.2% 0.0417
Low PER Peak Ejection Rate 88.8% 0.0770
Low PFR Peak Filling Rate 99.6% 0.1560
Low APFR [Atrial Peak Filling Rate 58.2% 0.0048
High LVT  |Variance of LV wall thickening 63.4% 0.0156

Table 1: The sensitivity of the classifier to clinical biomarkers of poor cardiac
health. A biomarker with no relevance would have V,y - v. = 0 on average.

t=20 t=40

Second Principal Component

-2 0 2 3 6
First Principal Component

Can generate images with
more/less
LV (left ventricle) concept

Interpretable models do not just offer clinicians a well-calibrated estimate

of the likelihood of disease. Interpretability using known bis k | the
 model’s prediction to be placed 1n thecontext o current medical knowledge and
§ is a key part of translation mto clinical

1d msm-ma 1ng1 o" '1nes ‘which
practice. ) *

known biomarkers allows the

Left
atrium

\ Coronary
d ) artery
3
N

nghi
ventricle



Concept-based model explanations for Electronic Health

Records
Diana Mincu Eric Loreaux Shaobo Hou
Google Research Google Health DeepMind
London, UK Palo Alto, CA, USA London, UK
Sebastien Baur Ivan Protsyuk Martin Seneviratne
Google Health Google Health Google Health TCAV for RN NS
London, UK London, UK London, UK
Anne Mottram Nenad Tomasev Alan Karthikesalingam
DeepMind Deepmind Google Health
London, UK London, UK London, UK
Jessica Schrouff*
Google Research
London, UK A
schrouff@google.com
Presence of a concept in one data point ° CAV | /Q \\‘\
a,T I | Istart‘tend '
= t > >
tCAC (%) = —L—op —] a
‘ @ — '
||at | |2 Istart: Lend CAVtend Istart \—/
d —e Target - - Decision
e—e Prediction AKI 2(t_end)
| 4 Layer O o Layer 1 i
O P — 0.5 \ 0.5
0.8 0.4 Model prediction 0.4
. 0.3 changes. 0.3
r 3 < < <
}% 0.4 = e o e B
' 0.1 0.1
0.2 0.0 0.0
0.0 -0.1 -0.1
-0. 0. -0.
0 10 20 30 40 50 60 70 2O 10 20 30 40 50 60 70 0O 10 20 30 40 50 60 70 020 10 20 30 40 50 60 70
Time (h) Time (h) Time (h) Time (h)
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github.com/google/ehr-predictions/tree/master/tcav-for-ehr
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UBS: A Dimension-Agnostic Metric for Concept Vector
Interpretability Applied to Radiomics

Authors Authors and affiliations

Hugo Yeche =T, Justin Harrison =JJ, Tess Berthier

Radiology: Artificial Inteligence

On the Interpretability of Artificial Intelligence in
Radiology: Challenges and Opportunities

E'Mauricio Reyes =, ('Raphael Meier, (“'Sérgio Pereira, Carlos A. Silva, {“Fried-Michael Dahlweid,
Hendrik von Tengg-Kobligk, {'Ronald M. Summers, Roland Wiest

@ ©

%a o s
L rns of co e o0 A
Ay yabsrs 3 ey, grethany E |
' S50 o Y Fig. 4. Results at layer fire6/concat of SqueezeNet for GLCM radiomics, -
-~ QSO Y ,” - sponding R?* scores (left) and Br scores (right) for calcification prediction.
‘) 7 >m”;“ P, . .........................................................................................................
= ‘ bty . [Submitted on 9 Apr 2019]
Non-concept examples . . . . .
. l . Regression Concept Vectors for Bidirectional
s : . - -
® é @t . Explanations in Histopathology
Testin
;l ¥ Gataset of 39 f(.)f(l) s..(8d)=vi.(18d) -+ : Mara Graziani, Vincent Andrearczyk, Henning Miller
‘ ) ca s /‘l’:: f(' | Bidirectional Relevance
N 4 .
f ) : 1.00
il . 0.75
: 0.50
size & . . 0.25

» 0.00

. o
__
shape . @ « ~0.25
-0.50
vescicular appearance ‘ . o -0.75

-1.00
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TORNADO DERECHO

At
THMUNDERS TORMS ' A

S

:
.
¢"

A P9

.

. ‘ -}
STO‘;" COHHUNITIES 4 '__":ﬁ_“
SURGE ¢ y NEHC '
DUST I

STORM BRAAL N | ETING

BLIZZARDS ‘at PO . o
. | K mﬂ ~10 Janw 2

- A e WRC X - ’

Interpreta

-

ble Al for Deep-Learning-Based Meteorological’Applications

Eric B. Wendolaski, Ingrid C. Guch
_The Aerospace Corporation

Importance of Eye Structure to Cat. 4 Prediction

Calculate gradient of model loss for HU4 class w.r.t.
activations from final layer
Gradient vectors point in direction of decreasing
probability of correct class identification

Gradient vectors (GV)

Yyyyy

R DIN&) 1. Gather concept images / negative images
7 f" o 2. Gather layer activations for the above
'7‘.)", . *3‘ \O e 3. Train linear classifier on activations

f&) T‘S"(’) Q@q 4. Repeat while varying negative images
\ -)t .';.{L - I‘b’ -

£ p v ¢ o gh Separating

C ey C" ’i»; hyperplane

. CAV (points towards

“Eye” activations) Negative images from ALOI

(Geusebroek et al. 2005)
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« CAV tending to point in opposite direction of GVs tends to point in
direction of increasing probability of correct class identification

TCAV Score Distribution TCAV Score Distribution
Concept: Eyewall | Class: HU4 Concept: Eyewall | Class: TD
#Experiments: 200 #Experiments: 200
1 T

10 1.0
1 1
Mean: 0.87 ; Mean: 0.29 !
Signif: True : Signif: True !
0.8 4 | 0.8 4 1
| 1
| 1
1 |
| |
| 1
o 0.6 1 ! o~ 0.6 !
= o
c | c ]
@ | @ |
3 | 3 [
4 | > 1
& | & 1
& D4+ H & 0.4
|
|
1
1
0.2 1
|
|
|
|
1
0.0 T T y u . T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0 0.0 0.1 02 0.3 04 0.5 0.6 0.7 0.8 09

TCAV Score TCAV Score

Negative Images had to be
on black background
(similar to concept images)

10



Bald -
Bangs -
Big_Lips -
Big_Nose -
Black_Hair -
Blond_Hair -
Brown_Hair -

Bushy_Eyebrows -

Double_Chin -
Q
5 Eyeglasses -
e
e Goatee -
e
< :
Gray_Hair -

Heavy_Makeup -
High_Cheekbones -
Mustache -
Narrow_Eyes -
No_Beard -
Oval_Face -
Pale_Skin -

Pointy_Nose -

Follow up work on ML fairness

@Google with non-image data

Sensitivity of classifier output f
to CelebA attributes

[Denton et al. 19]

Language
model

Igbt toxic comments e

Igbt neutral comments @
project respect statements ——
project respect identities e

0.0 0.2 0.4 0.6 0.8 1.0

(a) TOXICITY@1

l Unbiasing
Igbt toxic comments °
Igbt neutral comments e

project respect statements »

project respect identities r~e-

0.0 0.2 0.4 0.6 0.8 1.0

(b) TOXICITY@6

- [Hutchinson et al. 19]



What it concepts are
confounded/overlap?

Published as a conference paper at ICLR 2021

DEBIASING CONCEPT-BASED EXPLANATIONS WITH
CAUSAL ANALYSIS

Mohammad Taha Bahadori, David E. Heckerman
{bahadorm, heckerma}@amazon.com

(a) The 1deal concepts (b) Our more realistic graph (c) The graph with a(y)

Figure 2: (a) The ideal view of the causal relationships between the features x, concepts ¢, and labels
y. (b) In a more realistic setting, the unobserved confounding variable u impacts both x and ¢. The
shared information between x and y go through the discriminative part of the concepts d. We also
model the completeness of the concepts via a direct edge from the features x to the labels y. (c)

When we use d(y) = Elc|y] in place of d and ¢, we eliminate the confounding link u — c.
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2020 Nature Machine Intelligence

Concept Whitening for Interpretable Image Recognition

Zhi Chen! Yijie Bei? Cynthia Rudin!?

Figure 1. Possible data distributions in the latent space. a, the
data are not mean centered; b the data are standardized but not
decorrelated; ¢ the data are whitened. In both a and b, unit vectors
are not valid for representing concepts.



| GAN DISSECTION:
Dek}uggmg GAN VISUALIZING AND UNDERSTANDING
with concepts GENERATIVE ADVERSARIAL NETWORKS

David Bau'?, Jun-Yan Zhu', Hendrik Strobelt>>, Bolei Zhou®,
Joshua B. Tenenbaum!, William T. Freeman!, Antonio Torralba!?

'Massachusetts Institute of Technology, *MIT-IBM Watson Al Lab,
‘IBM Research, *The Chinese University of Hong Kong

€9# Iun

LES# HUN

(a) Example artifact-causing units (c) Ablating “artifact” units improves results

Figure 8: (a) We show two example units that are responsible for visual artifacts in GAN results.
There are 20 units in total. By ablating these units, we can fix the artifacts in (b) and significantly
improve the visual quality as shown in (c).
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Automatically learning CAVs

[Ghorbani et al. NeurlPS 19]
Segment training images into patches, cluster them to discover new concepts (and rigorously validate them).

Inputs: Examples of
CoiCE PIS fi : R* — R™
. ||||||"I W §§ .. B K class
Yo S8 "
| Random
Images
Hand concept Human concept Poles concept
in dumbbell class in Jinrikisha class in carousel class

S
Al '

Most salient
Most salient
2" most salient
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Discovering “complete” set of concepts

[Yeh et al. Neurips 20]

Decompose activations into concept vectors that span the activation space.

Itl .: x :
Feature
layer

(a) Use ACE to
segment images
and cluster

The relative prediction accuracy

Completeness: if I only had this concept.

L y~v[1[y = argmax,, P(y'|E[z1.7], h)]] — R

tx,y~V[]]'[y = arg ma,xy, P( ,|X1:T7 f)]] =R
159

q---a Salient to ‘
PSS NE - ¢

(b) Decompose feature
vectors into concept vectors

P(P(x),c)
Concepts Projected
Feature Layer
Whale Zebra
‘ — - —> Bat

(c) evaluate
discovered concepts

ConceptSHAP = 0.5, importarit to zebra

ConceptSHAP = 0.3, important to blue whale

ConceptSHAP = 0.2, important to bat

Why this metric?

Under simple assumptions, this metric is
equivalent to top k PCA vectors.



DISSECT: Disentangled Simultaneous Explanations via Concept Traversals

[Ghandeharioun et al. 2021] 3

Influence

Joint train a generative model to produce .B,,CT

multiple counter factual concepts

»

Genemto:
Realism Discriminator
Real / rake? ‘
Real or
- D - Fake?

Heatmaps Segmentation Retrieval Counterfactual Multiple
Masks Based Generation Counterfactual
Generations

‘P . .-
N SRR |
L4 _)_-, "2

e.g. [5. 6] e.qg. [7] e.g. [8, 9]

Distinctness

Is this skin lesion Melanoma?

Query: Benign

Slide credit: Asma Ghandeharioun  [1] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. ICML, 2018.



Concept bottleneck models

[Goh et al., ICML 20]
A bottleneck

7
%(@;‘ - - - @ — o B zebra-ness
4
-

A%
"
»

@

stripes 45%

lion 5%
Train a model with concepts as neurons in the middle. 0.50 Lol £
o ; | A _&—%
Bonus: we can interact and control the model| o | ——- :
U 0404 NN\ T e
= o\
. < 0.35 1 \
Based on my expertise, N \\
symptom X should not = N‘
© 1 ~&~ Contro ..‘\"“ s =
contribute to the diagnosis. ] = i =
0.20 { =~ Sequential w
-5- Independent \ : -
0.15 41 o e
0 2 4 . 2 10

Number of concepts intervened




|CS: Combine TCAV + |G to provide
poth global and local explanations

Integrate on the path of a CAV

<->

A projection of path integration

B.ICSvsIG

162

[Schrouff et al. 21]

Zebras @ last layer

=

Global explanations
Counts

Local explanations

Striped @ last layer

0.00 0"25 0 Y50 0.75
ICS

0 : v v v
-0.1 00 01 02 03

600

400

Counts

200

0 v Y ' '
-0.1 00 01 02 03

0 v . v v
-0.1 00 01 02 03

Striped @ last layer

3000 +
2500 1

2 2000 1
=

3
3 1500

1000 1

500 +

Horse @ last layer

600

400

200 4

400

300

200 1

100 1

600

400

200 1

0.00 025 050 0.75
ICS

O W v T T
-0.1 00 01 02 03

0 ‘ v y y
-0.1 00 0.1 0.2 03

0 -
-0.1 00 01 02 03

Horse @ last layer

Zebras look like horses
from far a way



Types of interpretability methods

-.' Explaining data argmax (Q(Explanation|Human, Data, Task)
E

ﬁ (3 argmax (Q(Explanation, Model|[Human, Data, Task)

E,M

Building inherently interpretable model

My ML

Post-training interpretability methods

argmax ()(Explanation|Model, Human, Data, Task)
E



Things that aren 't covered but important - science

e Sclence of It - studying models as a scientific object

IMAGENET-TRAINED CNNS ARE BIASED TOWARDS
TEXTURE; INCREASING SHAPE BIAS IMPROVES
ACCURACY AND ROBUSTNESS

The Origins and Prevalence of Texture Bias in
Convolutional Neural Networks

Robert Geirhos Patricia Rubisch
University of Tiibingen & IMPRS-IS University of Tiibingen & U. of Edinburgh Katherine L. Hermann Ting Chen Simon Kornblith
robert .geirhos@bethgelab.org p.rubisch@sms.ed.ac.uk Stanford University Google Research, Toronto Google Research, Toronto

hermannk@stanford.edu iamtingchen@google.com skornblith@google.com
Claudio Michaelis Matthias Bethge* ~
University of Tiibingen & IMPRS-IS University of Tiibingen 4 CNNs can learn shape as easily as texture
claudio.michaelis@bethgelab.org matthias.bethge@bethgelab.org

Data efficiency

Felix A. Wichmann* Wieland Brendel* PR e
University of Tiibingen University of Tiibingen e T | 1
felix.wichmann@uni-tuebingen.de wieland.brendel@bethgelab.org ag Lo R

Geirhos Style Transfer
Accuracy (Max over training)
B

L I e ——— -

‘
100

Navon
Accuracy (Max over training)
3 & 8 8 8

(a) Texture image (b) Content image (c) Texture-shape cue conflict
814%  Indian elephant 71.1%  tabby cat 63.9%  Indian elephant
10.3% indri 17.3% grey fox 264%  indri Qg I
82% black swan 33% Siamese cat 9.6% black swan ® Training Data (%) . Training Data (%)
. . . . 3 g AlexNet . ResNet-50
Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture 2" : T
. . . . g - - 1
cues); (b) a normal image of a cat (with both shape and texture cues), and (¢) an image with a o| © ® ' '
texture-shape cue conflict, generated by style transfer between the first two images. 2 E"
§ = 404 -
El| §
= 20+
§ pommmoo e
0 50 1000 50 100

Training Data (%) Training Data (%)



Things that aren t covered but important - science

e Sclence of It - studying models as a scientific object

ABOUT  PRIZE  SUBMIT Network Dissection:
Quantifying Interpretability of Deep Visual Representations

David Bau! Bolei Zhou! Aditya Khosla, Aude Oliva, and Antonio Torralba

Feature Visualization CSAIL. MIT

How neural networks build up their understanding of images .
House Dog Train

Feature visualization allows us to see how GoogleNet (1], trained on the ImageNet (2] dataset, builds up its

—
= res5c unit 1410 res5c unit 1573 resSc unit 924
= o
= Ty
b2
= @
Z pd
& n
¢ 8
i o
|
7 ©
/ Z
\ [
\ s
§ 8’ inception_5Sb unit 437
N =B —
§ —r— —1 '., o .
§ et © W D
\ A : > &
§ TR T
Textures (layer mixed3a) Patterns (layer mixed4a) Parts (layers mixed4b & mixed4c) ﬁg%:: COHVS_B unit 243 COhV5_3 unit 142
nEgEEm

”’fv

conv5_3 unit 102 conv5_3 unit 491

understanding of images over many layers. Visualizations of all channels are available in the appendix.

VGG-16

A randomized set of one million images is fed through The activations are fed through UMAP to reduce them to We then draw a grid and average the activations that fall
the network, collecting one random spatial activation two dimensions. They are then plotted, with similar within a cell and run feature inversion on the averaged
AUTHORS AFFILIATIONS PUBLISHED Do per image. activations placed near each other. activation. We also optionally size the grid cells
. . PR according to the density of the number of activations
Chris Olah Google Brain Team Nov. 7, 2017 10.23915/distill.00007 9 4 :
that are averaged within.
Alexander Mordvintsev Google Research
Ludwig Schubert Google Brain Team

AFFILIATIONS PUBLISHED

Shan Carter Google Brain Team March 6, 2012 10.23915/distill.00015
Zan Armstrong Google Accelerated
Science
Ludwig Schubert OpenAl
lan Johnson Google Cloud

Chris Olah OpenAl



That s a wrap!
« What and why

e ICaution!: Things to be careful when using and developing interpretability
methods

@ « tvaluate: How to evaluate interpretability methods

And that's
$9%,. « Methods: 3 types of methods and examples — R

3%

awrap

cheeseburger.com
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Backups



Other domains

Radiology: Artificial Intelligence

[Submitted on 10 Aug 2021] On the Interpretability of Artificial Intelligence in
Post-hoc Interpretability for Neural NLP: A Survey Radiology: Challenges and Opportunities
Andreas Madsen, Siva Reddy, Sarath Chandar {'Mauricio Reyes =, "*'Raphael Meier, {I'sérgio Pereira, Carlos A. Silva, "“'Fried-Michael Dahlweid,

Hendrik von Tengg-Kobligk, “'Ronald M. Summers, Roland Wiest



Ok, great but...

What if | don’t have concepts?

Prediction Prediction
class accuracy

Example

TCAV scores

-
)
=
A I . I
0

PRP PRH/VH NV/FP

=] [ o) oD o [
N O~ 0 W

DR level 4 High

TCAV score

L O 9O 9
'—4

o
£

| don't have these!

Can we automate this?

170
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Automatically learning CAVs

[Ghorbani et al. NeurlPS 19]

Amirata Ghorbani
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Automatically learning CAVs

[Ghorbani et al. NeurlPS 19]

/i

172

_> RH!

B Kt class

A trained network under investigation
and
Internal tensors



Automatic Concept-based Explanations (ACE)

[Ghorbani et al. NeurlPS 19]

fi : R* - R™
Y 2iil e B
M B K™ class
® 0 o o 0 0
/ m

p 0.8

. 0.7

(a) Segment images

04

(b) (smart) cluster segments (c) evaluate discovered concepts
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. Validating with human experiments:
Intruder and meaning test

Choose the image that is conceptually different. Choose the image that is conceptually different.

s f
.

Experiment 1: Identifyig intruder concept

® Expl: Intruder test

® Task: |dentity an odd one out

Extracted
Hand-labeled

® Discovered concepts: 99%, similar to
hand-labeled dataset, 97%

® Exp2: Meaning test

Look at the following two groups of segments. In each group, you should look at the top row. Each image in the top row is
a zoomed-in version of another image shown on the bottom row. Now the question is that which of the groups seems
more meaningful to you.

Segment 1 Segment 4 Segment 1 Segment 2 Segment 3

Segment 2

Segment 3

— ® Task: Select between discovered
' concepts vs random segments and
name them.

® Correctly chosen 95% of time

Concept Segments
Random Segments

Which groups of images is more meaningful to you? O right (O left
L s i R ® 56% used the same name and 77%

named the same or top two terms
(e.g., human, face)

If possible please describe the chosen row in one word. Youranswer

Experiment 2: Identifying the meaning of concept
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Validating importance:
Addition and deletion test

Adding top-rated Deleting top-rated

Top1 ~TopS ~Top10 ~Top15 Top1 ~TopS ~Top10 ~Top15

iy

[ 4
¢
- ) =

SSC

o5
2

il ._;
7 J
B R
|

£

O
- et -
— W

SSC SDC

-— Most Important - Most Important
100 ~@— |east Important 100 =@ |Least Important
=== Random ==#== Random

Baseline performance
M N BN SN NN SN SN B SN SN SR SR B S S .

(o0}
o
(00}
o

Prediction accuracy(%)
3
Prediction accuracy(%)
(o)}
o

40 40
20 20
% 1 2 3 a 5 % 1 2 3 a1 5
Number of added concepts Number of deleted concepts

Adding the top5 discovered
concepts achieves 80% of
the original accuracy



: Qualitative results:

Surprises and non-surprises

This may not work

in Korea?
Lava concept Letters concept Pavement concept
in volcano class in cinema class in train class

Most salient

Hand concept Human concept ~ Poles concept

in dumbbell class in Jinrikisha class in carousel class

Most salient
Most salient
2" most salient

Hands are not dumbbaells...
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Ok, great but...

When do you stop?

B K™ class

07 s
=,
0.4 \ “ !

How many images?

N

==

Are these concepts “enough”?



Discovering “complete” set of concepts
[Yeh, Arik, Ravikumar, Pfister, K. Neurips 20]

Chih-Kuan Yeh




Discovering “complete” set of concepts
[Yeh, Arik, Ravikumar, Pfister, K. Neurips 20]

Decompose activations into concept vectors that span the activation space.

$(x) P(®(x),c) \
Feature Concepts Projected
layer Feature Layer

Whale Zebra
Bat

- —- = ‘ —» - —




Discovering “complete” set of concepts
[Yeh, Arik, Ravikumar, Pfister, K. Neurips 20]

(b) Decompose feature

Decompose activations Iinto concept vectors that Span the ac vectors into concept vectors

Pix) P(q)(X).C] ,
Feature Concepts Projected
Iayer Feature Layer
Whale Zebra
- - — ‘ — - - Bat
(@) Use ACE to i
segment images (©) evaluate
and cluster ,
discovered concepts
. - . . N ' Salient to ConceptSHAP = 0.5, importarit to zebra

Salient to ‘ ConceptSHAP = 0.3, important to blue whale

B 2
- E - !E - - Salient to ' ConceptSHAP = 0.2, important to bat
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Discovering “complete” set of concepts
[Yeh, Arik, Ravikumar, Pfister, K. Neurips 20]

(b) Decompose feature

Decompose activations Iinto concept vectors that Span the ac vectors into concept vectors

ctn.:x: P(‘I’(.X).C]
Feature Concepts Projected
layer Feature Layer
Whale Zebra
" -~ @ i B Bat
(a) Use ACE to D
segment images
(c) evaluate

and cluster

discovered concepts

- Q g N | Salient to ConceptSHAP = 0.5, importarit to zebra
5-1 - - - a Salient to ‘ ConceptSHAP = 0.3, important to blue whale
- n E - !,E - - Salientto @)  ConceptSHAP = 0.2, important to bat

The relative prediction accuracy
Completeness: if I only had this concept. Why this metric?

B y~v[1[y = argmax,, P(y/|E[z1.7],h)]] — R Under simple assumptions, this metric is
Z g L[y = arg max,, P( % ) — R~ €quivalent to top k PCA vectors.
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Discovering “complete” set of concepts

[Yeh, Arik, Ravikumar, Pfister, K. Neurips 20]

- ACE = PCA Kmeans == ours == ours-noc

1 Kmeans are often
> surprisingly good.
|
0.9
S o8 ACE might take a

3 while to converge.
&) 0.7
0.6

5 6 7 8 9 10
Number of Concept
Zebra Lion

Concept 16 wnacdl

r:,‘ v ! f1 |
ZAN I /‘,
_— !
.
~ y
““ “r ‘\ 2\

Concept 38 0.0079

Concept 46  0-0086

. LN

Concept 25  0.0050

: N e
o | o B
s e /% 0y

Concept 21 0.0043
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Ok, great but...
Haven't you heard about generative models?

Instead of looking for concepts within training set, can we just use generate
concepts using generative models?

Heatmaps Segmentation Retrieval Counterfactual Multiple
Masks Based Generation Counterfactual
Generations

e.q. [7] e.q. [8, 9] ' .

Is this skin lesion Melanoma?

Query: Benign

Slide credit: Asma Ghandeharioun 183



DISSECT: Disentangled Simultaneous Explanations via Concept Traversals

[Ghandeharioun, K., Li, Jou, Eoff, Picard, 2021]
Asma Ghandeharioun

Slide credit: Asma Ghandeharioun



DISSECT: Disentangled Simultaneous Explanations via Concept Traversals
[Ghandeharioun, K., Li, Jou, Eoff, Picard, 2021]

Heatmaps Segmentation Retrieval Counterfactual Multiple
Masks Based Generation Counterfactual
Generations

N Eeew

e.g. [5. 6] e.qg. [7] e.g. [8. 9]

Query: Benign

s this skin lesion Melanoma? [1] Erhan et al. “Visualizing higher-layer features of a deep network”. University of Montreal, 2009.
[2] Smilkov et al. “SmoothGrad: Removing noise by adding noise”. ICMLW 2017.
[3] Sundararajan et al. “Axiomatic attribution for deep networks”. ICML 2017.
[4] Lundberg et al. “A unified approach to interpreting model predictions”. NeurlPS 2017.
[5] Ghorbani et al. “Towards automatic concept-based explanations”. NeurlPS 2019.
[6] Santamaria-Pang, et al. “Towards Emergent Language Symbolic Semantic Segmentation and Model Interpretability”. MICCAI 2020.
[7] Silva et al. “Interpretability-guided content-based medical image retrieval”. MICCAI 2020.
[8] Samangouei et al.“ExplainGAN: Model explanation via decision boundary crossing transformations”. ECCV 2018.

[9] Singla et al. “Explanation by progressive exaggeration”. ICLR 2020.
Slide credit: Asma Ghandeharioun



DISSECT: Disentangled Simultaneous Explanations via Concept Traversals
[Ghandeharioun, K., Li, Jou, Eoff, Picard, 2021]

Influence
. |
® Desiderata q ‘
‘
. o (o / .« o Generator
® |nfluential (to classitier's decision) - [D'm'"a'“}
(cr Dimension 1\‘ Real /Fake? L '
. . }!a Real or
® Distinct concept traversals 2 - Fake?

® Stable generation

® High substitutability (can replace .
real data)

cT Distinctness
Disentangler

}

CT
Dimension?

® High realism (in data manitold)

Slide credit: Asma Ghandeharioun  [1] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. ICML, 2018.



Concept traversals in dermatology and 3D shapes dataset

Fitzpatrick
(FP) scale [1]

\" fl '-
vi |

Benign &

Asymmetrical

Asymmetrical with
surgical markings

Jagged borders .

Uneven colors -

Larger than 0.25" £ |

Slide credit: Asma Ghandeharioun

Query Query Query
FP I FP III FPV

EPE-mod DISSECT EPE-mod DISSECT EPE-mod DISSECT

Asymmetry No change Color

Color* 4 Color Border*

| Color &
Color* [ et : * No-change Surgical
Ih ',[ Diameter Border Border g Markings
Query EPE-mod  DISSECT Query EPE EPE-mod DISSECT
f(x) =0.00 f(¥) = 1.00 f(@) = 1.00 £(x) = 0.00
[ ; £ = 1.00 fG®) = 1.00 f® = 1.00
- i .
CTI, a=1.0
f(®) = 1.00

N/A

- h -

[1] Fitzpatrick, Thomas B. The validity and practicality of sun-reactive skin types | through VI. Archives of dermatology 124.6 (1988): 869-871.




Ok, great but...
Can we flip this around ano

build a new model?

A bottleneck

/,
%(«/,!’E . . - & — o B zebra-ness
i ®

stripes 45%
lion 5%



A‘Conc:ept pottleneck models

[Goh et al., ICML 20]

Pang Wei Thao Yew Siang
Koh* Nguyen® Tang*™




Concept bottleneck models

[Goh et al., ICML 20]
A bottleneck

7
%(@ - - - @ — o B zebra-ness
t ®

concept labels are needed
stripes 45% only at training time,
lion 5% not at test time.



“@Conc:ept pottleneck models

[Goh et al., ICML 20]
A bottleneck

Nz
ANz g - - @ . " — zebra-ness
¢ 7 ®
‘ - /\
concept labels are needed
stripes 45% only at training time,
lion 5% not at test time.

First thing to check: is the performance impacted? - No.

MODEL y RMSE (OAI) y ERROR (CUB)
concept INDEPENDENT 0.4354+ 0.024 0.240+0.012
bottleneck < SEQUENTIAL 0.418+ 0.004 0.243+0.006
JOINT 0.418+ 0.004 0.199+0.006
models
STANDARD 0.441+ 0.006 0.175£0.008
NO BOTTLENECK 0.443 £+ 0.008 0.173+0.003




A bottleneck

Nz |- -1+

i
stripes 45%
lion 5%

Bonus:
we can interact and control the model

Concept bottleneck models

[Goh et al., ICML 20]

A bottleneck

X
- @
X

stripes 45%
—Heorn—5%—

zebra-ness

zebra-ness



A bottleneck

M, | -| -

»
A%
"
»
s

- ’ >

stripes 45%

lion 5%

Bonus:
we can interact and control the model

Based on my expertise,
symptom X should not
contribute to the diagnosis.

Concept bottleneck models

[Goh et al., ICML 20]

. zebra-ness

OQAIl (Nonlinear c = y)

A __ 8%
C -~ -
h‘.“ \;‘~‘ ‘r/..
,.\\\ ‘W"_.
\
\»_‘\
1 -~ Control - - . -
T~ r— L —— )
jont
&~ Seguential "N
-5~ Independent -
3 £
—y T - e ——————
0 Z a D 8 1

Number of concepts intervened




Ok, great but...
what about causality?

Based on my expertise,
symptom X should not
contribute to the diagnosis.

ha



oo

CaCE: Causa

[Goyal et al., 20]

Yash Goyal

Amir Feder

TCAV score.

Uri Salit



'»CaCE: Causal TCAV score.

[Goyal et al., 20]

® Basic idea: Do operations on concepts using a generative
model to produce do(C; =1) and do(C, = 0) Calculate ATE.

Definition 1 (Causal Concept Effect, CaCE).
The causal effect of a binary concept Cy on the output of

the classifier f under the generative process g is:
classifier
CaCE(C’O, f) _ output

2y [£(1)|do(Co = 1)] — Eq [f(I)]do(Co = 0)] .
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'»CaCE: Causal TCAV score.

[Goyal et al., 20]

® Basic idea: Do operations on concepts using a generative
model to produce do(Cy =1) and do(C, = 0) Calculate ATE.

Definition 1 (Causal Concept Effect, CaCE).
The causal effect of a binary concept Cy on the output of

the classifier f under the generative process g is:
classifier
CaCE(Cy, f) = i

2y [£(1)|do(Co = 1)] — Eq [f(I)]do(Co = 0)] .

e.g., gender classifier f, ATE with glasses concept?

)ldo(Co =1)] —

)|do(C = 0)]

glasses no glasses

p(woman) = 0.88 p(woman) =0.4
197




d CaCE: Causal TCAV score.

[Goyal et al., 20]

® Can we train a generative model ‘good enough’ to make this
work?

C=O ’ (3=1
L — C=0— S5
ple
Encoder — M, X > Z > Decoder
z — Decoder .—>

Dec-CaCE EncDec-CaCE
Use sampled z Use a particular instance
testing general distributions testing particular population
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CaCE: Causal TCAV score.

[Goyal et al., 20]

® Can we train a generative model ‘good enough’ to make this

work?
=( ) =—————p C=1—
C O C=0— Sample |
. -_’ Encoder —W,X—— z —> Decoder —— | B
C=1—s |
Dec-CaCE EncDec-CaCE
Use sampled z Use a particular instance
testing general distributions testing particular population
class =0 class = 1
(bathroom) (shower)

0

Table 3. CaCE scores for natural images dataset

o

% of obj in | % of obj in | GT- Dec- EncDec-{ ConExp | TCAV §§ Natural

‘bathroom’ ‘shower’ CaCE | CaCE CaCE | (baseline) S & images
8

60 40 0.13 0.154 0.078 | | 0.23 0.723 — dataset
99 01 0.694 | 0.651 0.345 | | 0.841 1.000 -5
95 05 0.604 | 0.543 0.262 | | 0.791 0.988 z 8
99 50 0.328 | 0.31 0.291 | | 0.49 0.944 ° g
o a9
e



But

These are all global explanations only..
what about local?
longoing work]

My zebras!

All the zebras

Striped @ last layer

4000 -

3500 A 600 1

3000 A1

S

+ 2500 4
2000 A
1500 +

Coun

1000
500

000 025 050 0.75

0 - - - -
-0.1 00 01 02 03

Striped @ last layer



Combine TCAV + |G to provide
poth global and local explanations

Jessica Schrouff Sebastien Baur
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Integrate on the path of a
CAV

<->
A projection of path
Integration

Combine TCAV + |G to provide
poth global and local explanations

A. Training CAV

Red Concept
-

.

..\
J

Green Concept

B.ICSvsIG

1

A

e
~
fi( e :
~
~
G ~
"

W

)
-
o -7

\ /
f 7’
‘i.\\ I ”
NN :\:\h' /
> ”
4 7’
”
-

(:Zi>X£if*:1§' Intermediate

- layer

C. Baselines

/I
”s
”
”’
.
4
//
«—Concept-occluding
//
”
A <—Concept-forgetting

i

202

New baselines for
concepts



Combine TCAV + |G to provide
poth global and local explanations

a Zebras @ last layer
3000 1
w
c
ke 2500 4
)
c
& 2000 s
0.
X 3 15001 3
¢ O O
© |
. 1000
i
) 500 4
O L Al Ll
000 025 050 0.75
2]
| =
.0
o)
©
-
0
o
X
)
©
Q
o
-

4000 +
3500 1
3000 +
2500 4
2000 A
1500 1
1000 +
500

Striped @ last layer

0.00

600 4

0.50
ICS

0.25 0.75

600 1

400 4

200 1

0
-0.

600 1

400 4

Counts

200 1

1 00 01 02 03

0 v v v -
-01 00 01 02 03

Striped @ last layer

Horse @ last layer

0.00

600 1

400 1

200 +

0.50 0.75
ICS

0.25

400

300 ¢

200 +

100 1

0 v . -
-0.1 00 01 02 03

600

400 1

200 1

0 + T T T
-01 00 01 02 03

0 . v -
-0.1 00 01 02 03

Horse @ last layer

Global explanations &

Local explanations
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Basketball ball @ last layer

Jersey @ last layer

Floor @ last layer

4000 ) 4
3000 3000
3500
S 2500 -
¢ 3000
3 2000 3 2500 e 2000 4
c c c
3 1500 3 2000 2 1500 §
o ) O
1500
1000 1000 s
1000
500 1 18 SO0 500 i;
0 . — 0 . 0 v
0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75% 0.00 0.25 0.50 0.75
ICS ICS
600 | 600
500
500 500
400
400 400
300
300 300
200 200 200
100 4 100 100
0 0 0
-0.1 00 01 0.2 -01 00 01 0.2 -0.1 00 01 0.2
400 500 500
400 400
300
300 4 300 4
200
200 200
100 100 - 100 4
0 0 0
-01 00 01 0.2 -01 00 01 0.2 -01 00 01 0.2
400 400
350 500 350
300
400 =0
250 250
200 300 200
100 100
50 100 50
0 0 0
-0.1 00 01 02 -01 00 01 02 -01 00 01 02

Basketball ball @ last lay.

Jersey @ last layer

Floor @ last layer
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no humans, proxy task

1: Test hypothesis that should be true by craft a ground-truth dataset

Examples of

concepts
TLIN T
*i@éﬁm

Train a linear classifier to
separate activations.

l
CAV ( ") is the vector

orthogonal to the decision
boundary.

fi(B

fz(

- //‘"'fA/l

filllD

)\,

@/t

UC \fz

B Kt class

)fz('i'%}

//(

)

)

Ji (@)

How important was the
striped concept
to this zebra image
classifier?

K., Wattenberg, Gilmer, Cai, Wexler, Viegas, Sayres ICML 2018]



no humans, proxy task

1: Test hypothesis that should be true by craft a ground-truth dataset

Examples of

concepts zebraness — Op(z)
: R" — R™ S L) — : ‘
o s S Al C’k’l( ) striped CAV —» dvlc
- ‘ m”m = S—:/J . L M K™ class
ti@é%@ m
Xi S 0
TCAVQec 1.1 = LA ‘;k"f e
e @)y &)
Train a linear classifier to f[ (> = z\ //( )
o )N 4N |
separate activations. « Vo Ji (ﬁ) How important was the
.l \ : -
CAV (UC) is the vector £ (D A 1 (@) strl!:)ed conFept .
orthogonal to the decision to this zebra image e
boundary. classifier? —
dotted striped zig-zagged

K., Wattenberg, Gilmer, Cai, Wexler, Viegas, Sayres ICML 2018]



no humans, proxy task
1: Test hypothesis that should be true by craft a ground-truth dataset

An image
_|_

Potentially noisy Caption
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no humans, proxy task
1: Test hypothesis that should be true by craft a ground-truth dataset

- models can use either

concept image or caption

concept for classification.

K

concept

An image
_|_

Potentially noisy Caption
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no humans, proxy task
1: Test hypothesis that should be true by craft a ground-truth dataset

- models can use either

concept image or caption

concept for classification.

Concept
An image
_|_
Potentially noisy Caption
0% noisy 30% noisy 100% noisy no cptions

Four models trained with
209 different caption noise levels



no humans, proxy task
1: Test hypothesis that should be true by craft a ground-truth dataset

- models can use either

concept image or caption

concept for classification.

K

concept

i
h
:
-
odalbac ?
% . -
R 3
. afiad A \ ~
Q
\ \I
N - N A
\
4
4
’
3
g
-

Test models with
no caption image.

Test accuracy

Importance of SR
100% noisy

- 0% noisy 30% noisy
concept Four models trained with

210 different caption noise levels

no captions



no humans, proxy task

1: Test hypothesis that should be true by craft a ground-truth dataset

cab cucumber

10W10 18

08 08 08

10

Test accuracy

with
. . == Accuracy = ACCUracy
no caption image — TCAVimg o TCAV img

e TCAV non-img / == TCAV caption

04 04

08

o
N
o
N

TCAV score

o
§ oS

Accuracy
(]
SN

0.2 02 02 0.2

0.0
0.0 m 00 00

0% noisy 30% noisy 100% noisy no capti0|0°/° noisy 30% noisy 100% noisy no captions

Caption noise level in training set Caption noise level in training set

211



