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Adversarial Robustness of ML Models

natural q adversarial
example exampl
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Prediction: Imperceptible Prediction:
Bagel Adversarial Grand Piano
Perturbation

Original Top-3 inferred captions:

1. Aclose up of a giraffe with trees
in the background

2. Aclose up of a giraffe near a fence

3. Aclose up of a giraffe near a tree

Adversarial Keywords:

» i

“soccer”, “group” and “playing”

Adversarial Top-3 captions:

(targeted keyword method)

1. A group of young men
playing a game of soccer.

2. A group of people playing
a game of soccer.

3. A group of people playing
a game of baseball.



Robustness in Reinforcement Learning (NeurlPS 20, ICLR ‘21)

Reward:
+7094

Normal agent under Optimal attack ATLA agent under optimal attack

Normal agent

Normal agent under Optimal attack ATLA agent under optimal attack
(move opposite to the goal)



Other fun applications

win rate (black) >99.9% win rate (black) 10%
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Mathematical definition

e Distance to the decision boundary (Lp norm or other metrics)
o NP-hard for neural network with Lp norm (Katz et al., 2017)

o

Decision boundary



Mathematical definition

e Distance to the decision boundary

e Adversarial attack: over-estimation of robustness
o  White-box (Goodfellow et al., 2014, Carlini & Wagner, 2017, ...)
o Black-box (Chen et al., 2017, Cheng et al., 2019,2020, ...)

Decision boundary

I adversarial example



Mathematical definition

e Distance to the decision boundary
e (Sound) verification: certified lower bound of robustness

Decision boundary

Iz adversarial example



Challenges (attack)

e Attack to real world systems?
o Black box
o Transferability

e Attacks beyond evasion



Challenges (verification)

e Reluplex (2017): ~100 neurons
e Alpha-Beta-Crown (2021): (semi-realistic) CIFAR
models (>9M neurons)

Benchmark Name Application
Acasxu Control
Cifar10_resnet Image Classification

Cifar2020 (unscored)  Image Classification

Eran Image Classification
Marabou-cifar10 Image Classification
Mnistfc Image Classification
nn4sys Database Indexing

Oval21 Image Classification
Verivital Image Classification

Network Types
Feedforward + ReLU Only
ResNet

Conv + ReLU
Feedforward + non-ReLU
Conv + ReLU
Feedforward + ReLU Only

Feedforward + ReLU Only

Conv + RelLU

Conv + maxpool / avgpool

Size of Each NN
54.6k

440k, 487k

8.3M, 9.41M

1.37M, 1.68M

336k, 649k, 1.29M
1.03M, 1.53M, 2.03M

Zipped 1.79M, 790k
Original 194.2M,
336.5M

216k, 415k, 840k

46.3k, 46.3k

Provider

From last year

CMU [US]

From last year

ETH [Switzerland]

Stanford [US]

Imperial College London [UK]

CMU, Northeastern [US]

Oxford [UK]

Vanderbilt [US]

VNN-COMP 2021

Voting:

. alpha-beta-CROWN: 776.67

. VeriNet: 709.21

. ERAN: 588.71 (GPU) ETH / Illinois
. oval: 588.38

. Marabou: 302.14

. Debona: 208.7

.venus2: 194.56

. nnenum: 194.21

. nnv: 59.05

10. NeuralVerification.jl: 48.06
11. DNNF: 24.93

12. Neural-Network-Reach: 20.08
13. randgen: 1.84

O OONOUTRARWN=



Challenges (verification)

e Challenges:

Lack of Real Applications 100
“Hard” cases?

More realistic “specifications”?
More flexible architectures

h (ft)

O O O O

—100

Airborne collision avoidance system
for drones (ACAS Xu)



Challenges (defense)

e Defense from real threads:
Maybe doesn’t need to make
NN robust?
Out-of-distribution data
Natural perturbations

e Robustness as regularization
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paper
(Gowal et al., 2020)*
(Gowal et al., 2020)*
(Wu et al., 2020a)*
(Wu et al., 2020b)*
(Carmon et al., 2019)#
(Gowal et al., 2020)
(Sehwag et al., 2020)#
(Gowal et al., 2020)
(Wang et al., 2020)#
(Wu et al., 2020b)
(Alayrac et al., 2019)*
(Hendrycks et al., 2019)*
(Pang et al., 2020c)
(Pang et al., 2020b)
(Cui et al., 2020)*
(Zhang et al., 2020b)
(Rice et al., 2020)
(Huang et al., 2020)*

(Zhang et al., 2019b)*

model
available
available
available
available
available
available
available
available
available
available
available
available
available
available
available
available
available
available

available

architecture
WRN-70-16
WRN-28-10
WRN-34-15
WRN-28-10
WRN-28-10
WRN-70-16
WRN-28-10
WRN-34-20
WRN-28-10
WRN-34-10
WRN-106-8
WRN-28-10
WRN-34-20
WRN-34-20
WRN-34-20
WRN-34-10
WRN-34-20
WRN-34-10
WRN-34-10

clean
9110
89.48
87.67
88.25
89.69
85.29
88.98
85.64
8750
85.36
86.46

8711
86.43
85.14
88.70
84.52
85.34
83.48
84.92

report.
65.87
62.76
60.65
60.04
62.5
5714

56.82
65.04
56.17
56.30

57.4

54.39

53.57
54.36

58
58.03
56.43

AA
65.88
62.80
60.65
60.04
59.53
57.20

5714
56.86
56.29

56.17
56.03
54.92
54.39
53.74
53.57
53.51
53.42
53.34
53.08
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The gap between Al development and deployment

How we develop Al How we deploy Al

AN




Al Research

Trusted Al

IBM Research is building
and enabling Al solutions
people can trust

Fairness

To encourage the adoption of Al, we must ensure it
does not take on and amplify our biases. We are
creating methodologies to detect and mitigate bias
through the life cyde of Al applications.

As Al advances, and humans and Al systems increasingly
work together, it is essential that we trust the output of these
systems to inform our decisions. Alongside policy
considerations and business efforts, science has a central
role to play: developing and applying tools to wire Al systems
for trust. IBM Research’s comprehensive strategy addresses
multiple dimensions of trust to enable Al solutions that inspire
confidence.

Explainability Lineage

Knowing how an Al system arrives at an outcome is Lineage services can infuse trust in Al systems by

key to trust, particularly for enterprise Al. To improve ensuring all their components and events are

transparency, we are researching local and global trackable. We are developing services like

interpretability of models and their output, training for instrumentation and event generation, scalable

interpretable models and visualization of information event ingestion and management, and efficient

flow within models, and teaching explanations. lineage query services to manage the complete
lifecycle of Al systems.

View publications View publications




Definition of Trustworthy Al

European Commission’s Definition

Trustworthy Al has three components, which should be met throughout the system's entire life cycle:

1. itshould be lawful, complying with all applicablelaws and regulations;
ETHICS GUIDELINES 2. itshould be ethical, ensuring adherence to ethical principles and values; and

FOR TRUSTWORTHY Al

3. it should be robust, both from a technical and social perspective, since, even with good intentions, Al
systems can cause unintentional harm.

The General Data Protection Regulation (GDPR)

WHAT ARE THE

1PRINCIPLES
OF GDPR?

«@ 6. Integrity and confidentiality 7. Accountability

N Keep it secure Record and prove compliance. Ensure policies.

IBM Research Al


https://www.metacompliance.com/blog/what-are-the-7-principles-of-gdpr/
https://www.amara-marketing.com/travel-blog/7-principles-of-the-gdpr-and-what-they-mean

Adversarial ML: Learning with an Adversary

_ Generative Adversarial Network A
* Understanding model
performance in the worst case ' ' ' '/ -
""""""""" : b
* Improving model performance g ..
bY learning from (artificial) % -l .
mistakes 4 ’

Traning set

Fake Image

"‘ DEFENSE
Pentagon actively working to

3~ combat adversarial Al
s

IBM Research Al https://www.akira.ai/glossary/generative-adversarial-networks/
https://openai.com/blog/emergent-tool-use/



https://www.akira.ai/glossary/generative-adversarial-networks/
https://openai.com/blog/emergent-tool-use/

Model -
agnostic

Practical

Efficiency/Maximal
utility/Compatibility

Penetration Testing

Attack

(Bug Finding)

Defense
(Model Hardening)

Verification
(Model Certificate)

Applications to Al
(Model Boosting)

Roadmap toward Holistic Adversarial Robustness

e In-house sensitivity and reliability tests for developed models
* Generate prediction-evasive examples (per user constraints)
e Customize to model deployment conditions (e.g. cloud APlIs)

e Detecting and mitigating potential adversarial threats
¢ Plug-and-play model patching for a given model
e Landscape exploration: model fix and cleaning

* This model is certified to be attack-proof up to a certain level
e Quantifiable metric for certified robustness
e Al standards, governance, and law regulation

¢ Data augmentation
* Model reprogramming: data-efficient transfer learning
e Model watermarking



Trends | observed in Adversarial Machine Learning

* Attack: . | .
] A Complete List of All (arXiv) Adversarial Example Papers
* Adversarial attack on [Task] by Nicholas Carlini  2019.06.15

* Black-box adversarial attack on [Task]
* Hard-label black-box adversarial attack on [Task] /
3000 A
2000 - Sustainable?

e Efficient adversarial attack for [Perturbation Norm]

e Defense:
* Defending against adversarial attacks using [Method]
e Detecting adversarial examples using [Method]
* Certified robustness for [Task]/[Norm]
* Adversarial training using [Technique]

Cumulative Number of
Adversarial Example Papers

10;’& 10'\6 101’% 10;0
¢ REﬂECtiOﬂ: Year
* All empirical defenses are vulnerable
How practical is the threat model? (e.g. unrestricted adversarial examples)
Intriguing properties of [New Network Architecture]
Tradeoff between adversarial robustness and [Factor] (e.g. privacy, fairness, interpretability)
Hardness of adversarial ML: optimization and generalization



Defense Checklist: Should | publish my defense
against adversarial examples? [2021 version]

Defense @ Tested on (PGD)
Start here _
Checklist white-box attack?

YES NO
There is no | -
‘ free lunch Tested on NO on.
AutoAttack? publish
NO
| YES
Don’t VES Drop in clean _ ‘
publish E - accuracy? Gradient
obfuscation? YES
YES
NO
Outperform |
randomized Provably

YE
k NO  smoothing? > robust? NO /
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Short Bio

Trustworthy ML

PhD, Syracuse University, 2011-2016
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Optimization and Trustworthy Al Lab: https://Isjxjtu.github.io/
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Today’s Three Focused Challenges:

1. (Attack) Reverse Engineering of Deception (RED): From Attack
Generation, Rejection, to Attack Information Reverse Engineering

2. (Defense) Algorithmic Foundation of Attack-Agnostic Defense:
Beyond Min-Max Adversarial Training

3. (System) Robustness-to-X (R2X) Challenge: Holistic view of
robustness understanding
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Attack Vision: From Generation, Rejection, to
Reverse Engineering

Adversarial attack: A standard way to evaluate ‘worst-case’ robustness of ML models

Existing work: Focuses on attack generation in diverse scenarios (digital/physical,
white-box/black-box, soft/hard label, train-time/test-time)

Tesla Autopilot gets tricked into accelerating from

: 4 e o S ik Adversarial T-shirt to fool DNN-based person
35’ro85 mphV\iITh modified speed limit sign detectors [ECCV'20]
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Attack Challenge: Reverse Engineering of
Deception (RED)

@7? Train-timel g Test-time
¢ | adversary adversary

Data 1
RED aims to reverse engineer attack toolchains, rather than merely "rejecting’
(in terms of detection or robust training) adversarial attacks.

Inference |

1. RED for train-time attack (backdoor/Trojan attack): Recover Trojan trigger
pattern given only Trojan model [ECCV’20, ICLR’21]

2. RED for test-time attacks (adversarial examples): Recover pixel-level
perturbations and attribution-level attack saliency image region from an attack
[Feasibility and capability of RED?]
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Defense Vision: From Attack-Specific Robust
Training to Attack-Agnostic Robust Training

» Min-max optimization based adversarial training [ICLR’18]: Well-recognized
algorithmic foundation for adversarial defense

minimize E ,)ep maﬁirgize lir (0, x4+ 0, 7)
0 & €

« Attack-specific assumption: Attacker and defender share same objective, thus
difficult to adapt to different types of attacks

« Attack-agnostic training: Attacker and defender would enjoy different objective
functions --- Bi-Level Optimization (BLO)

miniemize ]E(x,y)ep[ftr(e, x+0"(0;%,y), y)]

subject to  0*(0;x,y) = arg min £, (0, d; X, y)
6cC
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A Holistic View: Robustness-to-X (R2X)

Uncertainty
,..;:5"‘;{:;:?:’13} V
v Calibration V
/ Test
V4 111
Dahility Accuracy
el | ]
Z |
m i . . [
D "f-‘l Fidelity Adv. | Sparsity \'
A ) robustness v
2\ |
= - OoD .
SMpsition Performance
Neurons

Fairness v\,

4 %)ut of
A4 - distribution

Fairness
robustness

Robustness vs. accuracy: e.g.,
[ECCV’18, ICML'19, ICLR'19]

Robustness vs. sparsity: e.g.,
[ICCV'19]

Robustness vs. OOD: e.g.,
[ECCV’20, NeurlPS’20]

Robustness vs. fairness: e.g.,
[ICML’21, FAT 21]

Robustness vs. interpretability: e.g.,
[NeurlPS’19, ICML'20]



“Now this is not the

end. It is not even the
beginning of the end.
But it is, perhaps, the
end of the beginning.’

)

~ Winston Churchill
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