

ELSA LAB

Fundamentals and Applications of Deep Reinforcement Learning 8/4/2021

Prof. Chun-Yi Lee

cylee@cs.nthu.edu.tw

Elsa Lab, Department of Computer Science National Tsing Hua University

Principle Investigator Biography

• Dr. Chun-Yi Lee

- Associate Professor of Computer Science, National Tsing Hua University (2015-present)
- NVIDIA Deep Learning Ambassador and Certified Instructor (2017-present)
- Senior Hardware Engineer, Oracle America, Inc. (2012-2015)

Education

- Ph.D., Department of Electrical Engineering, Princeton University
- M.S. and B.S., Department of Electrical Engineering, National Taiwan University

Honors and Awards

- 2020 Ta-You Wu Memorial Award, Ministry of Science and Technology (MOST)
- 2020 NVIDIA AI at the Edge Challenge (2nd Place)
- 2020 Distinguished Teaching Award, National Tsing Hua University (Top 1%)
- 2019 Young Scholar Innovation Award, Foundation for the Advancement of Outstanding Scholarship
- 2019 Young Scholar Research Award, Taiwan Semiconductor Industry Association
- 2019 Young Scholar Fellowship, Ministry of Science and Technology of Taiwan (MOST)
- 2018 Outstanding Young Engineer Award, the Chinese Institute of Electrical Engineering
- 2018 NVIDIA Jetson Developer Challenge (Champion Grand Prize)
- 2018 Outstanding Teaching Award, National Tsing Hua University
- 2018 Distinguished Young Scholar Research Award, National Tsing Hua University (Top 1%)
- 2018 ECCV Person In Context (PIC) Challenge (2nd Place)
- 2017-2018 NVIDIA GPU Grant
- 2016 NVIDIA Intelligent Embedded Robotics Challenge (Champion)
- 2009 ICCD Best Paper Award

- Research Domains
 - Intelligent Robotics
 - <u>Deep Reinforcement</u> <u>Learning</u>
 - <u>Computer Vision for</u>
 <u>Robotics</u>
 - <u>Virtual-to-Real Learning for</u> <u>Robotics</u>
 - Parallel Embedded Systems
 - Parallel Computing

Elsa Lab

Elsa Lab is supervised by Prof. Chun-Yi Lee, and is a professional research team dedicated to developing innovative deep reinforcement learning and computer vision technologies for intelligent robotics and autonomous agents.

Elsa Lab welcomes full-time research assistants, Ph.D. students, master students, and undergraduate students.

- Reinforcement Learning Backgrounds
- DRL Techniques
- Exploration
- Robotic Applications
- Summary

Markov Decision Process (MDP)

At each timestep t ...

The agent observes the state s_t

Then take the action according to the policy $\pi: \mathcal{S} \mapsto \mathcal{A}$

Receive the **reward** and **next state**.

Deep Reinforcement Learning

• The goal of the agent is to maximize the expected sum of rewards

$$\sum_{t} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} [r(\mathbf{s}_t, \mathbf{a}_t)]$$

The Goal of MDP

<u>maximize the discounted accumulated reward at each</u> <u>timestep t</u>.

How does RL solve MDP

Recap: the objective of MDP

$$G_t = \sum_{i=t}^T \gamma^{i-t} r(s_i, a_i)$$

• RL searches π^* according to the following criteria:

$$\pi^* = \arg\max_{\pi} \mathbb{E}\left[G_t | s_t = s, a_i = \pi(s_i)\right], \forall s \in \mathcal{S}$$

Policy can be a deterministic function or a probability distribution

 $a_t = \pi(s_t)$ Deterministic function $a_t \sim \pi(a_t|s_t)$ Probability distribution

Categories of RL

We only list a few branches of RL algorithms.

Policy gradient

- Parameterize the policy as a probability distribution with $heta\colon\pi_{ heta}$
- Learn a policy by maximizing the objective function: $J(\theta)$

$$J(\theta) = \mathbb{E}_{s \sim d^{\pi_{\theta}}, a \sim \pi_{\theta}} \left[Q^{\pi}(s, a) \right] \quad d^{\pi}(s) = \lim_{t \to \infty} p(s = s_t | s_0, \pi)$$
$$\nabla_{\theta} J(\theta) = \mathbb{E}_{s \sim d^{\pi_{\theta}}, a \sim \pi_{\theta}} \left[Q^{\pi}(s, a) \nabla_{\theta} \log \pi_{\theta}(a | s) \right]$$
$$Q^{\pi}(s, a) = \mathbb{E} \left[G_t | s_t = s, a_t = a, \pi \right]$$

• Take an action by:

$$a_t \sim \pi_\theta(a|s_t)$$

Q-learning

Learn the state-action value function:

$$Q(s,a) \approx \mathbb{E}[G_t | s_t = s, a_t = a]$$

• Update the Q-function according to:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r(s_t, a_t) + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a) - Q(s_t, a_t))$$

• Take an action by:

$$a_t = \operatorname*{argmax}_{a} Q(s_t, a)$$

Comparison - Q-learning v.s. Policy Gradient

 Q-learning is an off-policy algorithm as the training data can be generated by an arbitrary policy

 $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r(s_t, a_t) + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a) - Q(s_t, a_t))$

 Policy gradient is an on-policy algorithm as the training data must be from the current policy

The stationary distribution of the current policy

$$J(\theta) = \mathbb{E}_{s \sim d^{\pi_{\theta}}, a \sim \pi_{\theta}} \left[Q^{\pi}(s, a) \right]$$

Actor-Critic

- Learn the **policy** and **state/state-action value function** concurrently $\pi_{\theta}(a_t|s_t) \qquad V(s) = \mathbb{E}[G_t|s_t = s] \qquad Q(s,a) = \mathbb{E}[G_t|s_t = s, a_t = a]$
- Use **policy gradient** to learn a policy: maximize $J(\theta^{\pi}) = \mathbb{E}_{s \sim d^{\pi_{\theta}}, a \sim \pi_{\theta}} [V_{\theta_{V}}(s)] \qquad J(\theta^{\pi}) = \mathbb{E}_{s \sim d^{\pi_{\theta}}, a \sim \pi_{\theta}} [Q_{\theta_{Q}}(s, a)]$
- Use **Q-learning** to learn a state/state-action value function: minimize $J(\theta^V) = \mathbb{E}_{s_t \sim d^{\pi_{\theta}}, a_t \sim \pi_{\theta}} \left[(r(s_t, a_t) + \gamma V_{\theta^V}(s_{t+1}) - V_{\theta^V}(s_t))^2 \right]$ $J(\theta^Q) = \mathbb{E}_{s_t \sim d^{\pi_{\theta}}, a_t \sim \pi_{\theta}} \left[(r(s_t, a_t) + \gamma \max_a Q_{\theta^Q}(s_{t+1}, a) - Q_{\theta^Q}(s_t, a_t))^2 \right]$
- Take action by:

$$a_t \sim \pi_{\theta}(a|s_t)$$

- Reinforcement Learning Backgrounds
- DRL Techniques
- Exploration
- Robotic Applications
- Summary

Why DRL?

- The traditional RL employs simple models (e.g. single layer neural networks)
- They fail on the high-dimensional state space (the curse of dimensionality)

The Basic Concept of DRL

 Embrace the expressive power of deep neural network (DNN)

The Contemporary DRL Algorithms

- Deep Q-Network (DQN)
- Deep Deterministic Policy Gradient (DDPG)
- Asynchronous Advantage Actor-Critic (A3C)
- Trust Region Policy Optimization (TRPO)
- Maximum Entropy RL

The Main Concepts of DQN

- Parameterize the Q-function with a DNN
- Enhance the data-efficiency by
- Enhance the performance by tranfunctions

$$J(\theta) = \mathbb{E}_{s_t, a_t, s_{t+1} \sim \mathcal{Z}} \left[(r(s_t, a_t) + \gamma \max_a Q_{\theta}(s_{t+1}, a) - Q_{\theta}(s_t, a_t))^2 \right]$$

Make it more stable

 Q_{θ^-} is a Q-function of the target network

 \mathcal{Z} is experience replay (buffer) consisting of many (s_t, a_t, s_{t+1})

The Main Concepts of DDPG

- Combine DQN (experience replay, target network) and Actor-Critic
- Reformulate the objective as (according to DPG theorem):

Actor
$$J(\theta^{\pi}) = \mathbb{E}_{s_t \sim \mathcal{Z}} \left[Q_{\theta^Q}(s_t, \pi_{\theta^{\pi}}(s_t)) \right]$$

Critic $J(\theta^Q) = \mathbb{E}_{s_t, a_t, s_{t+1} \sim \mathcal{Z}} \left[(r(s_t, a_t) + \gamma Q_{\theta^{Q-1}}(s_{t+1}, \pi_{\theta^{\pi}}(s_{t+1})) - Q_{\theta^Q}(s_t, a_t))^2 \right]$

 $egin{array}{ll} heta^{\pi}, heta^{Q} & ext{are the parameters for actor and critic} \ \mathcal{Z} & ext{is experience replay consisting of} & ext{many} \left(s_t, a_t, s_{t+1}
ight) \end{array}$

The Main Concepts of A3C

- The formulation remains the same as actor-critic method
- Parameterize the actor and critic with DNN
- Concurrently collect data from multiple workers, update a single policy.
- However, the recent works found that the synchronous version of A3C is more efficient in GPU, which is called A2C

Trust Region Policy Optimization

- Abbreviated as TRPO
- The objective and constraint function can be expressed as :

$$\max_{\theta} \mathbb{E}_{s \sim \rho_{\theta_{old}}, a \sim q} \left[\frac{\pi_{\theta}(a \mid s)}{q(a \mid s)} Q_{\theta_{old}}(s, a) \right] ,$$

subject to
$$\mathbb{E}_{s \sim \rho_{\theta_{old}}}[\bar{D}_{KL}^{\rho_{\theta_{old}}}(\pi_{\theta_{old}}(.|s)||\pi_{\theta}(.|s))] \leq \delta$$

TRPO guarantees monotonic improvement for policy updates

Maximum Entropy Reinforcement Learning

• Standard reinforcement learning

$$\pi^* = \arg\max_{\pi} \mathbb{E}_{(s_t, a_t) \sim \pi} [\sum_{t} R(s_t, a_t)]$$

- Maximum entropy reinforcement learning
 - An entropy term $\alpha \mathscr{H}(\pi(\cdot | s_t))$ is introduced to encourage exploration
 - $\boldsymbol{\alpha}$ is a hyper-parameter for controlling how important the entropy term is
 - $\mathcal{H}(\pi(\cdot | s_t))$ is the entropy function
 - The policy is trained to maximize (1) the expected return and (2) entropy of the actions

$$\pi^* = \arg\max_{\pi} \mathbb{E}_{(s_t, a_t) \sim \pi} \left[\sum_{t \in \mathcal{A}_t} R(s_t, a_t) + \alpha \mathcal{H}(\pi(\cdot \mid s_t)) \right]$$
(2)

- Reinforcement Learning Backgrounds
- DRL Techniques
- Exploration
- Robotic Applications
- Summary

DRL is Extremely Data-Inefficient

- For example, in the best case, DQN consumes 200M frames to achieve the human-level performance!
- Moreover, DQN mostly fails to human even consuming > 200M frames.

If you are a Supervise Learning Practitioner

 You might wonder that why supervised learning (SL) can train DNN efficiently on several dataset (e.g. MNIST, CIFAR-10, Imagenet), but DRL cannot do that.

It is because the "training data"!

Bad training data contribute nothing on RL Just like unclean training data undermines SL

Training Data for DRL

• Recap: the objective function of RL

Sub-Optimal Policy

The Cause of Sub-Optimal Policy

Exploitation and Exploration

Balancing the exploitation and exploration is necessary for RL, otherwise no useful training data can be obtained

Sparse Rewards and Deceptive Rewards

Deceptive rewards

Prone to learn a sub-optimal policy

Exploitation and Exploration

How do RL agents exploit? Optimization.

$$J(\theta) = \mathbb{E}_{s_t, a_t, s_{t+1} \sim \mathcal{Z}} \left[(r(s_t, a_t) + \gamma \max_a Q_{\theta^-}(s_{t+1}, a) - Q_{\theta}(s_t, a_t))^2 \right]$$
$$J(\theta^{\pi}) = \mathbb{E}_{s \sim d^{\pi_{\theta}}, a \sim \pi_{\theta}} \left[V_{\theta^V}(s, a) \right]$$
$$J(\theta^{\pi}) = \mathbb{E}_{s_t \sim \mathcal{Z}} \left[Q_{\theta^Q}(s_t, \pi_{\theta^{\pi}}(s_t)) \right]$$

How do RL agents explore?

RL Exploration Strategies

Exploration in deep reinforcement learning

- To visit novel states as many as possible
- To obtain better estimation of the value function

Contemporary exploration strategies

- · ε-greedy exploration and noise based exploration
- Entropy-based exploration
- Curiosity-based exploration
- Diversity-driven exploration
- Never give up
- Go and explore

Challenges

- Latency (the timesteps required for convergence)
- Efficiency (the states visited by the agent should be as fewer as possible)
- Easy implementation

ε-Greedy, Entropy-based, Noise-based Exploration

Noisy Network DQN / A2C

 Parameterizes the weights of neural networks as probability distributions

Parameter Noise DDPG

 They inject noise in the parameters at the beginning of an episode and collect a whole rollout using this perturbed parameters

Diversity-Driven Exploration

The modified loss function encourages the agent <u>act</u> <u>optimally while differentiating from prior policies</u>.

Curiosity-Driven Exploration Architecture ICM ICM $\hat{\phi}(s_{t+1})$ $harbor{a}_t$ Inverse Model S_{t} $\phi(s_t) \quad \phi(s_{t+1})$ Forward Model eatures a_{t+1} a_t $r_{t}^{e} + r_{t}^{i}$ $r_{t+1}^e + r_{t+1}^i$ s_{t+1} a_t s_t

Two separate modules: An RL agent and an intrinsic curiosity module (ICM)

- ICM contains a forward dynamics model for estimating the novel of states
- ICM also incorporates an inverse dynamics model for regulating the embeddings
- The losses of the forward dynamics model serve as the intrinsic rewards for the agent

Curiosity-Driven Exploration Challenges

Two separate modules: An RL agent and an intrinsic curiosity module (ICM)

- ICM contains a forward dynamics model for estimating the novel of states
- ICM also incorporates an inverse dynamics model for regulating the embeddings
- The losses of the forward dynamics model serve as the intrinsic rewards for the agent

Flow-Based Intrinsic Curiosity Module Architecture

- The properties of flow-baed intrinsic curiosity model (FICM)
 - FICM uses optical flow prediction errors as the novelty of states
 - Optical flows are estimated in dual directions: Forward and backward
 - The differences between the warped frames and the actual frames serve as the intrinsic reward

Flow-Based Intrinsic Curiosity Module Architecture

The properties of flow-baed intrinsic curiosity model (FICM)

- FICM uses optical flow prediction errors as the novelty of states
- Optical flows are estimated in dual directions: Forward and backward
- The differences between the warped frames and the actual frames serve as the intrinsic reward

Flow-Based Intrinsic Module Implementations

Two different implementations of flow predictors are provided

- Different implementations validate the generalizability of FICM
- FICM only requires two states as its input, instead of eight as in ICM

41

• The two implementations are based on FlowNet 2.0 modules

Source of prediction errors

- 1. Amount of training data Prediction error is high where few similar examples were seen by the predictor (epistemic uncertainty)
- Stochasticity Prediction error is high because the target function is stochastic (aleatoric uncertainty). Stochastic transitions are a source of such error for forward dynamics prediction
- 3. **Model misspecification** Prediction error is high because necessary information is missing, or the model class is too limited to fit the complexity of the target function
- 4. Learning dynamics Prediction error is high because the optimization process fails to find a predictor in the model class that best approximates the target function

Factor (2) *Stochasticity* can result in the Noisy TV problem

RND aims to address the stochasticity issue, because in the original ICM, the target network can be chosen to be deterministic.

A different approach where **the prediction problem is randomly** generated

- This involves two neural networks:
 - A fixed and randomly initialized *target* network which sets the prediction problem
 - A *predictor* network trained on the data collected by the agent.

The *target* network takes an observation transforms it to an embedding $f\colon O\to \mathbb{R}^k$

The *predictor* network $\hat{f}: O \to \mathbb{R}^k$ is trained by gradient descent to minimize the expected MSE $||\hat{f}(x;\theta) - f(x)||^2$ with respect to its parameter $\theta_{\hat{f}}$.

Comparison of next-state prediction with RND

Never Give Up: Learning Directed Exploration Strategies

- First reinforcement learning agent able to solve hard exploration games by learning a range of directed exploratory policies
- First algorithm to achieve non-zero rewards (with a mean score of 8,400) in the game of **Pitfall!** without using demonstrations or hand-crafted features
- NGU o jointly learns a family of policies, with various degrees of exploratory behavior
 - The learning of the exploratory policies can be thought of as a <u>set</u>
 <u>of auxiliary tasks</u> that can help build a shared architecture that continues to develop even in the absence of extrinsic rewards

Never Give Up: Learning Directed Exploration Strategies

Contributions

- The main contributions of **NGU** consists of the following items:
- An exploration bonus combining *life-long* and *episodic* novelty to learn exploratory strategies that can maintain exploration throughout the agent's training process (to never give up)
 - Developing intrinsic motivation rewards that encourage an agent to explore and visit as many states as possible by providing more dense "internal" rewards for novelty-seeking behaviors
 - Long-term *life-long* novelty rewards encourage visiting many states throughout training, across many episodes
 - Short-term *episodic* novelty rewards encourage visiting many states over a short span of time (e.g., within a single episode of a game)

Never Give Up: Learning Directed Exploration Strategies

The never-give-up intrinsic reward generation architecture

• The network is trained based on the augmented reward

$$r_t = r_t^e + \beta r_t^i$$

- The intrinsic reward r_t^l satisfies three properties:
 - It rapidly discourages revisiting the same state within the same episode
 - It slowly discourages visits to states visited many times across episodes

Go-Explore: A New Approach for Hard-Exploration Problems

1. Phase 1

Go — Go to the selected state **Explore** — Start explore from that state

2. Phase 2

Robustify — Use the trajectory collect from Phase 1.

Bootstrapped DQN

- Multiple bootstrapped heads are used for evaluating the value function
- Each bootstrapped head is trained independently
- MB-DQN extends the concept of Bootstrapped DQN for multiple backup lengths

Vanilla Bootstrapped DQN

- Reinforcement Learning Backgrounds
- DRL Techniques
- Exploration
- Robotic Applications
- Summary

Inverse Dynamics Model (IDM) for Robotic Applications

Given a desired motion (i.e. a list of states, $\tau = [\hat{s}_1, \hat{s}_2, \dots, \hat{s}_T]$), a robot can accomplish this motion by inferring the actions (i.e. a list of torques, $[a_1, a_2, \dots, a_T]$) by IDM

Nair, Ashvin, et al. "Combining self-supervised learning and imitation for vision-based rope manipulation." 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017.

Agrawal, Pulkit, et al. "Learning to poke by poking: Experiential learning of intuitive physics." *Advances in Neural Information Processing Systems*. 2016. Pathak, Deepak, et al. "Zero-Shot Visual Imitation." (2018) takes it as an image-based IDM

How to Obtain an IDM?

Data-driven modeling (e.g., neural network)

Training Data Collection

Human demonstration

(from Google Al blog)

Random exploration (by robots) [1, 2]

Pros: high-quality data (including complex motions)

Cons: too much human effort

Pros: zero human effort

Cons: low-quality data (no complex motions)

[1] Nair, Ashvin, et al. "Combining self-supervised learning and imitation for vision-based rope manipulation." 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017.

[2] Agrawal, Pulkit, et al. "Learning to poke by poking: Experiential learning of intuitive physics." Advances in Neural Information Processing Systems. 2016.

Adversarial Active Exploration

We train a **reinforcement learning (RL)*** agent to collect **non-trivial** training data (i.e. complex motions) for IDM

*Here we use Proximal Policy Optimization (PPO)

Adversarial Active Exploration

- The competitive relationship creates a curriculum to continually improve both sides
- As a result, there are a lot of **complex motions** in the collected dataset
- Also, our method doesn't rely on human supervision

Adversarial Active Exploration

TRAIN A ROBOT?

Traditional Way — Google's Approach

Time Consumption

3000 robot-hours of practice

Danger

What if we train an autonomous car in real-world?

Money nood to huw lots of robotic

We need to buy lots of robotic arms

Potential Damage

Bump into wall? Or fall into water!

Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, Google, Mar. 2016

Modular Architecture for Virtual-to-Real Deep Reinforcement Learning

Advantage of Virtual World

SPEED

Gap Between Virtual and Real

Light Texture Shape Shadow are totally different!

familiar

not familiar Segmentation Model

"Virtual-to-real: Learning to control in visual semantic segmentation", IJCAI 2018

"Virtual-to-real: Learning to control in visual semantic segmentation", IJCAI 2018

Image Semantic Segmentation

Virtual-to-Real: Learning to Control in Visual Semantic Segmentation

NVIDIA Jetson Developer Challenge Champion Grand Prize, IJCAI 2018 Full Paper, and GTC 2018 Poster

Video Demonstration: Official Project Description: Paper Link: https://youtu.be/ OqdnG4AII8 https://tinyurl.com/y2dI7skl https://www.ijcai.org/Proceedings/2018/0682.pdf

Simulation Environments

Example Environments

A3C Agents in Virtual Environments

- A3C agent is able to move to its destination by itself
- The color palette has to be the same as those used for semantic segmentation

Simulated environments

Visualization

Obstacle avoidance

Training in Simulator: Obstacle Avoidance Task

Target following

TRAINING IN SIMULATOR: TARGET FOLLOWING TASK

[1] Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World, Josh, et al.

Training Environments

71

EVALUATION ENVIRONMENTS

EVALUATION ENVIRONMENTS

Demonstration

Link: https://youtu.be/jz4lipO54Jg

Further Improvement of Virtual-to-Real — Virtual Guide

- Denoted as a 2-D Ball
- Dynamically Adjust the Size and Position

Virtual Guidance for Robot Navigation

NVIDIA AI the Edge Second Place Award, GTC 2020 Poster

Autonomous Machines & Robotics

1st place was awarded a Trip to NVIDIA HQ, NVIDIA Titan RTX, NVIDIA Jetson Xavier, and \$1K in Public Cloud Compute Credits, 2nd place was awarded a NVIDIA Titan RTX, NVIDIA Laptop, NVIDIA Jetson Xavier and \$500 in Public Cloud Compute Credits, and 3rd place was awarded a NVIDIA Jetson AGX Xavier, NVIDIA Laptop, and \$250 in Public Cloud Compute Credits

AUTONOMOUS MACHINES & ROBOTICS: 1ST PLACE Nindamani the Weed Removal Robot

AUTONOMOUS MACHINES & ROBOTICS: 2ND PLACE Sim-to-Real: Virtual Guidance for Robot Navigation

ONOMOUS MACHINES & ROBOTICS: 3RD PLACE Autonomous Tank

Demonstration

Link: https://youtu.be/G9tcofUwFPw

- Reinforcement Learning Backgrounds
- DRL Techniques
- Exploration
- Robotic Applications
- Summary

Summary

- In this talk, we discussed the fundamental concepts of reinforcement learning, and introduced the concepts of deep reinforcement learning
- We have explained the importance of exploration, and discussed several representative exploration techniques.
- We have discussed how reinforcement learning can be applied to robotic applications, and demonstrated how a policy can be trained in virtual worlds and transferred to the real world.

Thank you for your attention! Q & A

Prof. Chun-Yi Lee cylee@cs.nthu.edu.tw

ELSA LAB

http://elsalab.ai

Elsa Lab, Department of Computer Science National Tsing Hua University