Cost-sensitive Classification: Techniques and Stories

Hsuan-Tien Lin

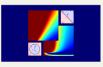
htlin@csie.ntu.edu.tw

Professor
Dept. of CSIE, National Taiwan University

Machine Learning Summer School @ Taipei, Taiwan August 2, 2021

About Me

- co-author of textbook 'Learning from Data: A Short Course'
- instructor of two Coursera
 Mandarin-teaching ML MOOCs on Coursera



goal: make ML more realistic

- weakly supervised learning: in ICML '20, ICLR '21, ...
- online/active learning: in ICML '12, ICML '14, AAAI '15, EMNLP '20, . . .
- cost-sensitive classification: in ICML '10, KDD '12, IJCAI '16, ...
- multi-label classification: in NeurIPS '12, ICML '14, AAAI '18, ...
- large-scale data mining: e.g. co-led KDDCup world-champion NTU teams 2010–2013

More About Me

attendant: MLSS Taipei 2006

student workshop talk: Large-Margin Thresholded Ensembles for Ordinal Regression

Disclaimer about Cost-sensitive Classification

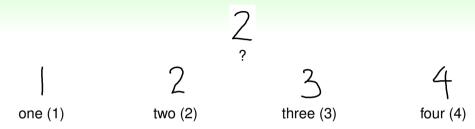
materials mostly from "old" tutorials

- Advances in Cost-sensitive Multiclass and Multilabel Classification. KDD 2019
 Tutorial, Anchorage, Alaska, USA, August 2019.
- Cost-sensitive Classification: Algorithms and Advances. ACML 2013 Tutorial, Canberra, Australia, November 2013.
- core techniques somewhat mature, compared to 10 years ago
- new research still being inspired, e.g.
 - Classification with Rejection Based on Cost-sensitive Classification, Charoenphakdee et al., ICML '21
 - Cost-Sensitive Robustness against Adversarial Examples, Zhang and Evans, ICLR '19
- will show one application story in the end

Outline

- Cost-Sensitive Multiclass Classification
 - CSMC Motivation and Setup
 - CSMC by Bayesian Perspective
 - CSMC by (Weighted) Binary Classification
 - CSMC by Regression
- Cost-Sensitive Multilabel Classification
 - CSML Motivation and Setup
 - CSML by Bayesian Perspective
 - CSML by (Weighted) Binary Classification
 - CSML by Regression
- 3 A Story of Bacteria Classification with Doctor-Annotated Costs
- Summary

Which Digit Did You Write?



• a multiclass classification problem: grouping 'pictures' into different 'categories'

C'mon, we know about multiclass classification all too well! :-)

Performance Evaluation

2?

- ZIP code recognition:
 - 1: wrong; 2: right; 3: wrong; 4: wrong
- check value recognition:
 - 1: one-dollar mistake; 2: no mistake;
 - 3: one-dollar mistake; 4: two-dollar mistake

different applications: evaluate mis-predictions differently

ZIP Code Recognition

2

1: wrong; 2: right; 3: wrong; 4: wrong

- regular multiclass classification: only right or wrong
- wrong cost: 1; right cost: 0
- prediction error of h on some (\mathbf{x}, y) :

classification cost =
$$[y \neq h(\mathbf{x})]$$

regular multiclass classification:

well-studied, many good algorithms

Check Value Recognition

2

1: one-dollar mistake; 2: no mistake; 3: one-dollar mistake; 4: **two**-dollar mistake

- cost-sensitive multiclass classification: different costs for different mis-predictions
- e.g. prediction error of h on some (\mathbf{x}, y) :

absolute cost =
$$|y - h(\mathbf{x})|$$

next: more about **cost-sensitive multiclass** classification (CSMC)

What is the Status of the Patient?

(image by mcmurryjulie from Pixabay)

bird flu

cold (images by Clker-Free-Vector-Images from Pixabay)

another classification problem: grouping 'patients' into different 'status'

are all mis-prediction costs equal?

Patient Status Prediction

error measure = society cost

5			
predicted	bird flu	cold	healthy
bird flu	0	1000	100000
cold	100	0	3000
healthy	100	30	0

- bird flu mis-predicted as healthy: very high cost
- cold mis-predicted as healthy: high cost
- · cold correctly predicted as cold: no cost

human doctors consider costs of decision; can computer-aided diagnosis do the same?

Setup: Class-Dependent Cost-Sensitive Classification

Given

N examples, each (input \mathbf{x}_n , label y_n) $\in \mathcal{X} \times \{1, 2, \dots, K\}$

and cost matrix
$$C \in \mathbb{R}^{K \times K}$$
 with $C(y, y) = 0 = \min_{1 \le k \le K} C(y, k)$

patient diagnosis

with society cost

$$C = \begin{pmatrix} 0 & 1000 & 100000 \\ 100 & 0 & 3000 \\ 100 & 30 & 0 \end{pmatrix}$$

check digit recognition with absolute cost

(cost function)

$$\mathcal{C}(y,k)=|y-k|$$

Goal

a classifier $g(\mathbf{x})$ that pays a small cost $\mathcal{C}(y, g(\mathbf{x}))$ on future **unseen** example (\mathbf{x}, y)

includes regular classification C_c like $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ as special case

Which Age-Group?

child (2)

teen (3)

adult (4)

(images by Tawny van Breda, Pro File, Mieczysław Samol, lisa runnels, vontoba from Pixabay)

- small mistake—classify child as teen; big mistake—classify infant as adult
- cost matrix C(y, g(x)) for embedding 'order': $C = \begin{pmatrix} 0 & 1 & 4 & 5 \\ 1 & 0 & 1 & 3 \\ 3 & 1 & 0 & 2 \\ 5 & 4 & 1 & 0 \end{pmatrix}$

CSMC can help solve many other problems like ordinal ranking

cost vector **c**: a row of cost components

- society cost for a bird flu patient: $\mathbf{c} = (0, 1000, 100000)$
- absolute cost for digit 2: **c** = (1, 0, 1, 2)
- age-ranking cost for a teenager: $\mathbf{c} = (3, 1, 0, 2)$
- 'regular' classification cost for label 2: $\mathbf{c}_c^{(2)} = (1, 0, 1, 1)$
- movie recommendation
 - someone who loves romance movie but hates terror:

$$\mathbf{c} = (\text{romance} = 0, \text{fiction} = 5, \text{terror} = 100)$$

someone who loves romance movie but fine with terror:

$$\mathbf{c} = (\text{romance} = 0, \text{fiction} = 5, \text{terror} = 3)$$

cost vector:

representation of personal preference in many applications

Setup: Example-Dependent Cost-Sensitive Classification

Given

N examples, each (input \mathbf{x}_n , label y_n) $\in \mathcal{X} \times \{1, 2, \dots, K\}$

and cost vector $\mathbf{c}_n \in \mathbb{R}^K$

—will assume $\mathbf{c}_n[y_n] = 0 = \min_{1 \le k \le K} \mathbf{c}_n[k]$

Goal

a classifier $g(\mathbf{x})$ that pays a small cost $\mathbf{c}[g(\mathbf{x})]$ on future **unseen** example $(\mathbf{x}, y, \mathbf{c})$

- will assume $\mathbf{c}[y] = 0 = c_{\min} = \min_{1 \le k \le K} \mathbf{c}[k]$
- note: y not really needed in evaluation

example-dependent ⊃ class-dependent ⊃ regular

Outline

- Cost-Sensitive Multiclass Classification
 - CSMC Motivation and Setup
 - CSMC by Bayesian Perspective
 - CSMC by (Weighted) Binary Classification
 - CSMC by Regression
- Cost-Sensitive Multilabel Classification
 - CSML Motivation and Setup
 - CSML by Bayesian Perspective
 - CSML by (Weighted) Binary Classification
 - CSML by Regression
- A Story of Bacteria Classification with Doctor-Annotated Costs
- Summary

Key Idea: Conditional Probability Estimator

Goal (Class-Dependent Setup)

a classifier $g(\mathbf{x})$ that pays a small cost $\mathcal{C}(y, g(\mathbf{x}))$ on future **unseen** example (\mathbf{x}, y)

if $P(y|\mathbf{x})$ known

Bayes optimal $g^*(\mathbf{x}) =$

$$\underset{1 \le k \le K}{\operatorname{argmin}} \sum_{v=1}^{K} P(y|\mathbf{x}) \mathcal{C}(y,k)$$

if
$$q(\mathbf{x}, y) \approx P(y|\mathbf{x})$$
 well

approximately good $g_q(\mathbf{x}) =$

$$\underset{1 \le k \le K}{\operatorname{argmin}} \sum_{y=1}^{K} q(\mathbf{x}, y) \mathcal{C}(y, k)$$

how to get conditional probability estimator *q*? logistic regression, Naïve Bayes, ...

Approximate Bayes-Optimal Decision

if $q(\mathbf{x}, y) \approx P(y|\mathbf{x})$ well

(Domingos, 1999)

approximately good
$$g_q(\mathbf{x}) = \operatorname*{argmin} \sum\limits_{1 \leq k \leq K}^K \frac{q(\mathbf{x}, y) \mathcal{C}(y, k)}{y = 1}$$

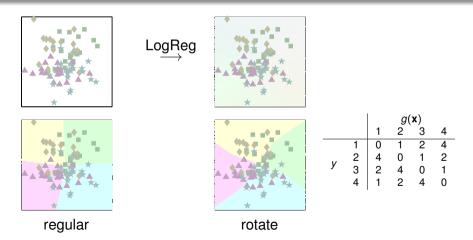
Approximate Bayes-Optimal Decision (ABOD) Approach

- ① use your favorite algorithm on $\{(\mathbf{x}_n, y_n)\}\$ to get $q(\mathbf{x}, y) \approx P(y|\mathbf{x})$
- 2 for each new input x, predict its class using $g_a(x)$ above

ABOD: probability estimate + Bayes-optimal decision

ABOD on Artificial Data

- ① use your favorite algorithm on $\{(\mathbf{x}_n, y_n)\}\$ to get $q(\mathbf{x}, y) \approx P(y|\mathbf{x})$
- 2 for each new input x, predict its class using $g_a(x)$ above



ABOD for Binary Classification

Given N examples, each (input \mathbf{x}_n , label y_n) $\in \mathcal{X} \times \{-1, +1\}$ and weights \mathbf{w}_+ , \mathbf{w}_- representing two entries of cost matrix

if $q(\mathbf{x}) \approx P(+1|\mathbf{x})$ well

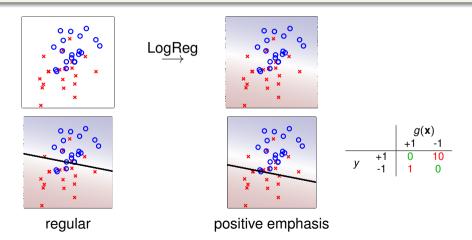
approximately good
$$g_q(\mathbf{x}) = \operatorname{sign}\left(\mathbf{w}_+ q(\mathbf{x}) - \mathbf{w}_- (1 - q(\mathbf{x}))\right)$$
, i.e. (Elkan, 2001),

$$g_q(\mathbf{x}) = +1 \qquad \Longleftrightarrow w_+ q(\mathbf{x}) - w_- (1 - q(\mathbf{x})) > 0 \qquad \Longleftrightarrow q(\mathbf{x}) > \frac{w_-}{w_+ + w_-}$$

ABOD for binary classification: probability estimate + threshold changing

ABOD for Binary Classification on Artificial Data

- use your favorite algorithm on $\{(\mathbf{x}_n, y_n)\}\$ to get $\mathbf{q}(\mathbf{x}) \approx P(+1|\mathbf{x})$
- for each new input **x**, predict its class using $g_q(\mathbf{x}) = \text{sign}(q(\mathbf{x}) \frac{\mathbf{w}_-}{\mathbf{w}_+ + \mathbf{w}_-})$



Pros and Cons of ABOD

Pros

- optimal if good probability estimate q
- prediction easily adapts to different C without modifying training (probability estimate)

Cons

- 'difficult': good probability estimate often more difficult
 than good multiclass classification
- 'restricted': only applicable to class-dependent setup
 - —need 'full picture' of cost matrix
- 'slower prediction' (for multiclass): more calculation at prediction stage

can we use any multiclass classification algorithm for ABOD?

MetaCost Approach

Approximate Bayes-Optimal Decision (ABOD) Approach

- ① use your favorite algorithm on $\{(\mathbf{x}_n, y_n)\}\$ to get $q(y, \mathbf{x}) \approx P(y|\mathbf{x})$
- 2 for each new input **x**, predict its class using $g_p(\mathbf{x})$

MetaCost Approach (Domingos, 1999)

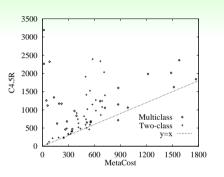
- 1 use your favorite multiclass classification algorithm on **bootstrapped** $\{(\mathbf{x}_n, y_n)\}$ and aggregate the classifiers to get $q(y, \mathbf{x}) \approx P(y|\mathbf{x})$
- 2 for each given input \mathbf{x}_n , relabel it to y'_n using $g_q(\mathbf{x})$
- 3 run your favorite multiclass classification algorithm

on relabeled $\{(\mathbf{x}_n, \mathbf{y}'_n)\}$ to get final classifier g

4 for each new input \mathbf{x} , predict its class using $g(\mathbf{x})$

pros: any multiclass classification algorithm can be used

MetaCost on Semi-Real Data



(Domingos, 1999)

- some 'artificial' cost with UCI data
- MetaCost+C4.5: cost-sensitive
- C4.5: regular

not surprisingly,

considering the cost properly does help

Outline

- Cost-Sensitive Multiclass Classification
 - CSMC Motivation and Setup
 - CSMC by Bayesian Perspective
 - CSMC by (Weighted) Binary Classification
 - CSMC by Regression
- Cost-Sensitive Multilabel Classification
 - CSML Motivation and Setup
 - CSML by Bayesian Perspective
 - CSML by (Weighted) Binary Classification
 - CSML by Regression
- A Story of Bacteria Classification with Doctor-Annotated Costs
- Summary

CSMC by (Weighted) Binary Classification Key Idea: Cost Transformation

(heuristic) relabeling useful in MetaCost: a more principled way?

Yes, by Connecting Cost Vector to Regular Costs!

$$\underbrace{\begin{pmatrix} 1 & 0 & 1 & 2 \end{pmatrix}}_{\text{c of interest}} \xrightarrow{\text{shift equivalence}} \underbrace{\begin{pmatrix} 3 & 2 & 3 & 4 \end{pmatrix}}_{\text{shifted cost}} = \underbrace{\begin{pmatrix} 1 & 2 & 1 & 0 \end{pmatrix}}_{\text{mixture weights } u_{\ell}} \cdot \underbrace{\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}}_{\text{regular costs}}$$

i.e.
$$\mathbf{x}$$
 with $\mathbf{c}=(1,0,1,2)$ equivalent to a weighted mixture $\{(\mathbf{x},y,u)\}=\{(\mathbf{x},1,1),(\mathbf{x},2,2),(\mathbf{x},3,1)\}$

cost equivalence (Lin, 2014): for any classifier
$$h$$
,
$$\mathbf{c}[h(\mathbf{x})] + \text{constant} = \sum_{\ell=1}^K u_\ell \, \llbracket \ell \neq h(\mathbf{x}) \rrbracket$$

Meaning of Cost Equivalence

$$\mathbf{c}[h(\mathbf{x})]$$
+constant = $\sum_{\ell=1}^{K} u_{\ell} [\ell \neq h(\mathbf{x})]$

```
on one (\mathbf{x}, \mathbf{y}, \mathbf{c}):
```

wrong prediction charged by $\mathbf{c}[h(\mathbf{x})]$

on all
$$\{(\mathbf{x}, \ell, u_{\ell})\}$$
:

wrong prediction charged by total weighted classification error of relabeled data

```
min<sub>h</sub> expected LHS
```

(original CSMC problem)

min_h expected RHS

(weighted classification when $u_{\ell} \geq 0$)

Calculation of u_{ℓ}

Smallest Non-Negative u_{ℓ} 's (Lin, 2014)

when constant =
$$(K-1) \max_{1 \le k \le K} \mathbf{c}[k] - \sum_{k=1}^{K} \mathbf{c}[k]$$
,

$$u_\ell = \max_{1 \le k \le K} \mathbf{c}[k] - \mathbf{c}[\ell]$$

e.g.
$$\underbrace{\begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} \end{pmatrix}}_{\mathbf{c} \text{ of interest}} o \underbrace{\begin{pmatrix} \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} \end{pmatrix}}_{\text{mixture weights } u_{\ell}}$$

- largest $\mathbf{c}[\ell]$: $u_{\ell} = \mathbf{0}$ (least preferred relabel)
- smallest $\mathbf{c}[\ell]$: $u_{\ell} = \text{largest (original label & most preferred relabel)}$

ℓ 's and u_{ℓ} 's **embed the cost**

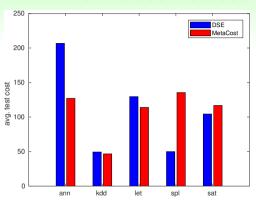
Data Space Expansion Approach

Data Space Expansion (DSE) Approach (Abe, 2004)

- 1 for each $(\mathbf{x}_n, y_n, \mathbf{c}_n)$ and ℓ , let $u_{n,\ell} = \max_{1 \le k \le K} \mathbf{c}_n[k] \mathbf{c}_n[\ell]$
- 2 apply your favorite multiclass classification algorithm on the weighted mixtures $\bigcup_{n=1}^{N} \{(\mathbf{x}_n, \ell, u_{n,\ell})\}_{\ell=1}^{K}$ to get $g(\mathbf{x})$
- by cost equivalence,
 - good g for new (weighted) regular classification problem
 - = good g for original cost-sensitive classification problem
- weighted regular classification: special case of CSMC
 but more easily solvable by, e.g., sampling + regular classification (Zadrozny, 2003)

pros: any multiclass classification algorithm can be used

DSE versus MetaCost on Semi-Real Data

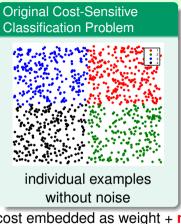


(Abe, 2004) some 'artificial' cost with UCI data

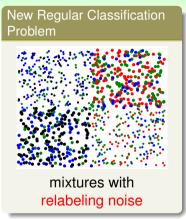
 use sampling + C4.5 for weighted regular classification

DSE competitive to MetaCost

Cons of DSE: Unavoidable Noise



absolute cost



- cost embedded as weight + noisy labels
- new problem usually harder than original one

need robust multiclass classification algorithm to deal with noise

Key Idea: Design Robust Multiclass Algorithm

One-Versus-One: A Popular Classification Meta-Method

- for all different class pairs (i, j),
 - 1 take all examples (\mathbf{x}_n, y_n)
 - that $y_n = i$ or j (original one-versus-one)
 - that $u_{n,i} \neq u_{n,j}$ with the larger-u label and weight $|u_{n,i} u_{n,j}|$ (robust one-versus-one)
 - 2 train a binary classifier $\hat{g}^{(i,j)}$ using those examples
- return $g(\mathbf{x})$ that predicts using the votes from $\hat{g}^{(i,j)}$
- un-shifting inside the meta-method to remove noise
- robust step makes it suitable for DSE

cost-sensitive one-versus-one: DSE + robust one-versus-one

Cost-Sensitive One-Versus-One (CSOVO)

Cost-Sensitive One-Versus-One (Lin, 2014)

- for all different class pairs (i, j),
 - 1 robust one-versus-one + calculate from \mathbf{c}_n : take all examples (\mathbf{x}_n, y_n)

that
$$\mathbf{c}_n[i] \neq \mathbf{c}_n[j]$$
 with smaller- \mathbf{c} label and weight $u_n^{(i,j)} = |\mathbf{c}_n[i] - \mathbf{c}_n[j]|$

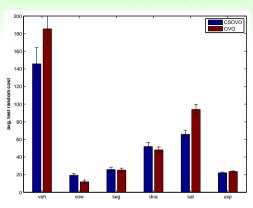
- $m{\mathcal{Q}}$ train a binary classifier $\hat{g}^{(i,j)}$ using those examples
- return $g(\mathbf{x})$ that predicts using the votes from $\hat{g}^{(i,j)}$
- comes with good theoretical guarantee:

test cost of
$$g \leq 2\sum_{i < j}$$
 test cost of $\hat{g}^{(i,j)}$

• sibling to Weighted All-Pairs (WAP) approach: even tighter guarantee (Beygelzimer, 2005) with more sophisticated construction of $u_n^{(i,j)}$

physical meaning: each $\hat{g}^{(i,j)}$ answers yes/no question 'prefer *i* or *j*?'

CSOVO on Semi-Real Data



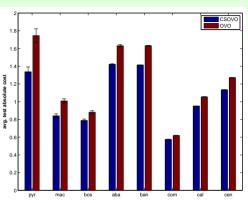
(Lin, 2014) some 'artificial' cost with UCI data

- CSOVO-SVM: cost-sensitive
- OVO-SVM: regular

not surprisingly again,

considering the cost properly does help

CSOVO for Ordinal Ranking



(Lin, 2014) absolute cost with benchmark ordinal ranking data

- CSOVO-SVM:
 cost-sensitive
- OVO-SVM: regular

CSOVO significantly better for ordinal ranking

Cons of CSOVO: Many Binary Classifiers

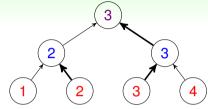
K classes $\xrightarrow{\text{CSOVO}} \frac{K(K-1)}{2}$ binary classifiers

time-consuming in both

- training, especially with many different $c_n[i]$ and $c_n[j]$
- prediction
- —parallization helps a bit, but generally not feasible for large K

CSOVO: a simple meta-method for median K only

Key Idea: $OVO \equiv Round$ -Robin Tournament Round-Robin Tournament Single-Elimination Tournament

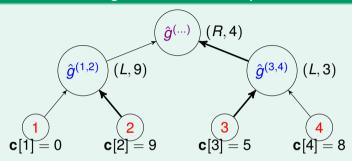


- prediction \equiv deciding tournament winner for each \mathbf{x}
- (CS)OVO: $\frac{K(K-1)}{2}$ games for prediction (and hence training)
- single-elimination tournament (for $K = 2^{\ell}$):
 - K − 1 games for prediction via bottom-up: real-world
 - log₂ K games for prediction via top-down: computer-world :-)

next: single-elimination tournament for CSMC

Filter Tree (FT) Approach

Filter Tree (Beygelzimer, 2009) Training: from bottom to top



- $\hat{g}^{(1,2)}$ and $\hat{g}^{(3,4)}$ trained like CSOVO: smaller-c label and weight $u_n^{(i,j)} = |\mathbf{c}_n[i] \mathbf{c}_n[j]|$
- $\hat{g}^{(...)}$ trained with (k_L, k_R) filtered by sub-trees

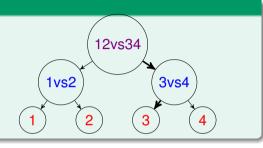
—smaller-**c** sub-tree direction and weight $u_n^{(...)} = |\mathbf{c}_n[k_L] - \mathbf{c}_n[k_R]|$

FT: top classifiers aware of bottom-classifier mistakes

Pros and Cons of FT

Pros

- efficient: O(K) training, $O(\log K)$ prediction
- strong theoretical guarantee: small-regret binary classifiers
 - ⇒ small-regret CSMC classifier



Cons

- 'asymmetric' to labels: non-trivial structural decision
- 'hard' **sub-tree dependent** top-classification tasks

next: other reductions to (weighted) binary classification

Other Approaches via Weighted Binary Classification

FT:

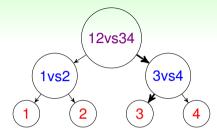
with regret bound (Beygelzimer, 2009)

the lowest achievable cost within $\{1,2\}$ or $\{3,4\}$?

Divide&Conquer Tree (TREE):

without regret bound (Beygelzimer, 2009)

the lowest ideal cost within $\{1,2\}$ or $\{3,4\}$?



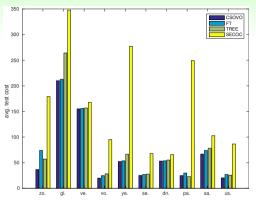
Sensitive Err. Correcting Output Code (SECOC): with regret bound (Langford, 2005)

$$\mathbf{c}[1] + \mathbf{c}[3] + \mathbf{c}[4]$$
 greater than some θ ?

training time:

SECOC
$$(O(T \cdot K)) > FT(O(K)) \approx TREE(O(K))$$

Comparison of Reductions to Weighted Binary Classification



(Lin, 2014) couple all meta-methods with SVM

- round-robin tournament (CSOVO)
- single-elimination tournament (FT, TREE)
- error-correcting-code (SECOC)

CSOVO often among the best; FT somewhat competitive

Outline

- Cost-Sensitive Multiclass Classification
 - CSMC Motivation and Setup
 - CSMC by Bayesian Perspective
 - CSMC by (Weighted) Binary Classification
 - CSMC by Regression
- Cost-Sensitive Multilabel Classification
 - CSML Motivation and Setup
 - CSML by Bayesian Perspective
 - CSML by (Weighted) Binary Classification
 - CSML by Regression
- A Story of Bacteria Classification with Doctor-Annotated Costs
- Summary

Key Idea: Cost Estimator

Goal

a classifier $g(\mathbf{x})$ that pays a small cost $\mathbf{c}[g(\mathbf{x})]$ on future **unseen** example $(\mathbf{x}, y, \mathbf{c})$

if every $\mathbf{c}[k]$ known optimal $g^*(\mathbf{x}) = \operatorname{argmin}_{1 < k < K} \mathbf{c}[k]$

if
$$r_k(\mathbf{x}) \approx \mathbf{c}[k]$$
 well approximately good $g_r(\mathbf{x}) = \operatorname{argmin}_{1 \leq k \leq K} r_k(\mathbf{x})$

how to get cost estimator r_k ? regression

Cost Estimator by Per-class Regression

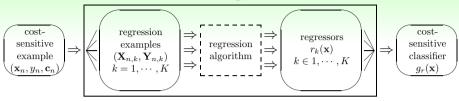
Given

N examples, each (input \mathbf{x}_n , label y_n , cost \mathbf{c}_n) $\in \mathcal{X} \times \{1, 2, \dots, K\} \times R^K$

input
$$\mathbf{c}_{n}[1]$$
 | input $\mathbf{c}_{n}[2]$ | ... | input $\mathbf{c}_{n}[K]$ | \mathbf{x}_{1} | 0, \mathbf{x}_{1} | 2, \mathbf{x}_{2} | 1, \mathbf{x}_{2} | 3, \mathbf{x}_{2} | 5 | \mathbf{x}_{N} | 6, \mathbf{x}_{N} | 1, \mathbf{x}_{N} | 0 |

want: $r_k(\mathbf{x}) \approx \mathbf{c}[k]$ for all future $(\mathbf{x}, y, \mathbf{c})$ and k

The Reduction-to-Regression Framework



- **1** encode: transform cost-sensitive examples $(\mathbf{x}_n, y_n, \mathbf{c}_n)$ to regression examples $(\mathbf{x}_{n,k}, Y_{n,k}) = (\mathbf{x}_n, \mathbf{c}_n[k])$
- \bigcirc learn: use your favorite algorithm on regression examples to get estimators $r_k(\mathbf{x})$
- 3 decode: for each new input \mathbf{x} , predict its class using $g_r(\mathbf{x}) = \operatorname{argmin}_{1 < k < K} r_k(\mathbf{x})$

the reduction-to-regression framework:

systematic & easy to implement

Theoretical Guarantees (1/2)

$$g_r(\mathbf{x}) = \operatorname*{argmin}_{1 \leq k \leq K} r_k(\mathbf{x})$$

Theorem (Absolute Loss Bound)

For any set of cost estimators $\{r_k\}_{k=1}^K$ and for any example $(\mathbf{x}, y, \mathbf{c})$ with $\mathbf{c}[y] = 0$,

$$\mathbf{c}[g_r(\mathbf{x})] \leq \sum_{k=1}^K \Big| r_k(\mathbf{x}) - \mathbf{c}[k] \Big|.$$

low-cost classifier ← accurate estimators

Theoretical Guarantees (2/2)

$$g_r(\mathbf{x}) = \operatorname*{argmin}_{1 \leq k \leq K} r_k(\mathbf{x})$$

Theorem (Squared Loss Bound)

For any set of cost estimators $\{r_k\}_{k=1}^K$ and for any example $(\mathbf{x}, y, \mathbf{c})$ with $\mathbf{c}[y] = 0$,

$$\mathbf{c}[g_r(\mathbf{x})] \leq \sqrt{2\sum_{k=1}^K (r_k(\mathbf{x}) - \mathbf{c}[k])^2}.$$

applies to common least-square regression

A Pictorial Proof

$$\mathbf{c}[g_r(\mathbf{x})] \leq \sum_{k=1}^K \left| r_k(\mathbf{x}) - \mathbf{c}[k] \right|$$

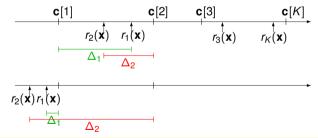
- assume **c** ordered and not degenerate: y = 1; $0 = c[1] < c[2] \le \cdots \le c[K]$
- assume mis-prediction $g_r(\mathbf{x}) = 2$: $r_2(\mathbf{x}) = \min_{1 \le k \le K} r_k(\mathbf{x}) \le r_1(\mathbf{x})$

$$\mathbf{c}[2] - \underbrace{\mathbf{c}[1]}_{0} \leq |\Delta_{1}| + |\Delta_{2}| \leq \sum_{k=1}^{K} |r_{k}(\mathbf{x}) - \mathbf{c}[k]|$$

An Even Closer Look

let
$$\Delta_1 \equiv r_1(\mathbf{x}) - \mathbf{c}[1]$$
 and $\Delta_2 \equiv \mathbf{c}[2] - r_2(\mathbf{x})$

- $oldsymbol{1} \Delta_1 \geq 0$ and $oldsymbol{\Delta_2} \geq 0$: $oldsymbol{c}[2] \leq \Delta_1 + \Delta_2$
- $2 \Delta_1 \leq 0$ and $\Delta_2 \geq 0$: $\mathbf{c}[2] \leq \Delta_2$
- 3 $\Delta_1 \geq 0$ and $\Delta_2 \leq 0$: $\mathbf{c}[2] \leq \Delta_1$



$$\mathbf{c}[2] \leq \max(\Delta_1, 0) + \max(\Delta_2, 0) \leq |\Delta_1| + |\Delta_2|$$

Tighter Bound with One-sided Loss

Define **one-sided loss** $\xi_k \equiv \max(\Delta_k, 0)$

with
$$\Delta_k \equiv \left(r_k(\mathbf{x}) - \mathbf{c}[k]\right)$$
 if $\mathbf{c}[k] = c_{\min} = 0$

$$\Delta_k \equiv \left(\mathbf{c}[k] - r_k(\mathbf{x})\right)$$
 if $\mathbf{c}[k] \neq c_{\min}$

Intuition

- $\mathbf{c}[k] = c_{\min}$: wish to have $r_k(\mathbf{x}) \leq \mathbf{c}[k]$
- $\mathbf{c}[k]
 eq c_{\min}$: wish to have $r_k(\mathbf{x}) \geq \mathbf{c}[k]$
- —both wishes same as $\Delta_k < 0 \iff \xi_k = 0$

One-sided Loss Bound:

$$\mathbf{c}[g_r(\mathbf{x})] \leq \sum_{k=1}^K \xi_k \leq \sum_{k=1}^K \left| \Delta_k \right|$$

The Improved Reduction Framework

(Tu, 2010)

- 1 encode: transform cost-sensitive examples $(\mathbf{x}_n, y_n, \mathbf{c}_n)$ to one-sided regression examples $(\mathbf{x}_n^{(k)}, Y_n^{(k)}, Z_n^{(k)}) = (\mathbf{x}_n, \mathbf{c}_n[k], 2 [\mathbf{c}_n[k] = 0] 1)$
- 2 learn: use a one-sided regression algorithm to get estimators $r_k(\mathbf{x})$
- 3 decode: for each new input **x**, predict its class using $g_r(\mathbf{x}) = \operatorname{argmin}_{1 \le k \le K} r_k(\mathbf{x})$

the reduction-to-OSR framework:

need a good OSR algorithm

Regularized One-Sided Hyper-Linear Regression

Given

$$(\mathbf{x}_{n,k}, Y_{n,k}, Z_{n,k}) = (\mathbf{x}_n, \mathbf{c}_n[k], 2 | \mathbf{c}_n[k] = 0 | -1)$$

Training Goal

all training
$$\xi_{n,k} = \max\left(\underbrace{Z_{n,k}\left(r_k(\mathbf{x}_{n,k}) - Y_{n,k}\right)}_{\Delta_{n,k}}, 0\right)$$
 small

—will drop k

$$\min_{\mathbf{w},b} \qquad \frac{\lambda}{2} \langle \mathbf{w}, \mathbf{w} \rangle + \sum_{n=1}^{N} \xi_n$$
 to get
$$r_k(\mathbf{x}) = \langle \mathbf{w}, \phi(\mathbf{x}) \rangle + b$$

One-Sided Support Vector Regression

Regularized One-Sided Hyper-Linear Regression

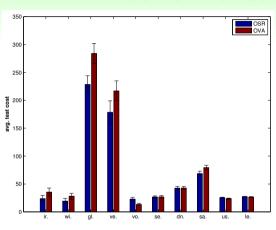
$$\min_{\mathbf{w},b} \quad \frac{\lambda}{2} \langle \mathbf{w}, \mathbf{w} \rangle + \sum_{n=1}^{N} \xi_{n}$$
$$\xi_{n} = \max \left(Z_{n} \cdot \left(r_{k}(\mathbf{x}_{n}) - Y_{n} \right), 0 \right)$$

Standard Support Vector Regression

$$\min_{\mathbf{w},b} \frac{1}{2C} \langle \mathbf{w}, \mathbf{w} \rangle + \sum_{n=1}^{N} (\xi_n + \xi_n^*)$$
$$\xi_n = \max(+1 \cdot (r_k(\mathbf{x}_n) - Y_n - \epsilon), 0)$$
$$\xi_n^* = \max(-1 \cdot (r_k(\mathbf{x}_n) - Y_n + \epsilon), 0)$$

OSR-SVM = SVR +
$$(\epsilon \leftarrow 0)$$
 + $(\text{keep } \xi_n \text{ or } \xi_n^* \text{ by } Z_n)$

OSR-SVM on Semi-Real Data

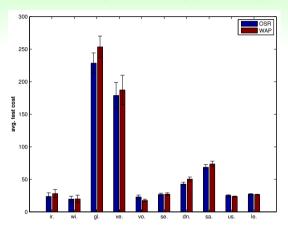


(Tu, 2010) some 'artificial' cost with UCI data

- OSR: cost-sensitive SVM
- OVA: regular one-versus-all SVM

OSR often significantly better than OVA

OSR versus WAP on Semi-Real Data



(Tu, 2010) some 'artificial' cost with UCI data

- OSR (per-class):
 O(K) training, O(K)
 prediction
- WAP \approx CSOVO (pairwise): $O(K^2)$ training, $O(K^2)$ prediction

OSR faster and competitive performance

From OSR-SVM to AOSR-DNN

OSR-SVM
$$\min_{\mathbf{w},b} \quad \frac{\lambda}{2} \langle \mathbf{w}, \mathbf{w} \rangle + \sum_{n=1}^{N} \xi_{n}$$
 with
$$r_{k}(\mathbf{x}) = \langle \mathbf{w}, \phi(\mathbf{x}) \rangle + b$$

$$\xi_{n} = \max \left(Z_{n} \cdot \left(r_{k}(\mathbf{x}_{n}) - Y_{n} \right), 0 \right)$$

Appro. OSR-DNN min regularizer
$$+\sum_{n=1}^{N} \delta_n$$
 with $r_k(\mathbf{x}) = \mathsf{NNet}(\mathbf{x})$ $\delta_n = \ln\left(1 + \exp\left(Z_n \cdot (r_k(\mathbf{x}_n) - Y_n)\right)\right)$

AOSR-DNN (Chung, 2016a) = Deep Learning + OSR +

smoother upper bound $\delta_n \ge \xi_n$ because $\ln(1 + \exp(\bullet)) \ge \max(\bullet, 0)$

From AOSR-DNN to CSDNN

Cons of AOSR-DNN

c affects both classification and feature-extraction in DNN but hard to do effective cost-sensitive feature extraction

idea 1: pre-training with c

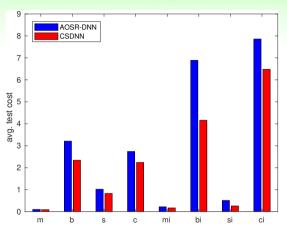
- layer-wise pre-training with cost-sensitive autoencoders
 loss = reconstruction + AOSR
- CSDNN (Chung, 2016a)
 AOSR-DNN + cost-sens.
 pre-training

idea 2: auxiliary cost-sensitive nodes

- auxiliary nodes to predict costs per layer
 - loss = AOSR for classification + AOSR for auxiliary
- applies to any deep learning model (Chung, 2020)

CSDNN: world's first successful CSMC deep learning model

AOSR-DNN versus CSDNN

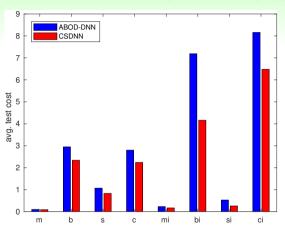


(Chung, 2016a)

- AOSR-DNN: cost-sensitive training
- CSDNN:
 AOSR-DNN +
 cost-sensitive feature
 extraction

CSDNN wins, justifying cost-sensitive feature extraction

ABOD-DNN versus CSDNN



(Chung, 2016a)

- ABOD-DNN: probability estimate + cost-sensitive prediction
- CSDNN:
 cost-sensitive training
 + cost-sensitive
 feature extraction

CSDNN still wins, hinting difficulty of probability estimate without cost-sensitive feature extraction

Outline

- Cost-Sensitive Multiclass Classification
 - CSMC Motivation and Setup
 - CSMC by Bayesian Perspective
 - CSMC by (Weighted) Binary Classification
 - CSMC by Regression
- Cost-Sensitive Multilabel Classification
 - CSML Motivation and Setup
 - CSML by Bayesian Perspective
 - CSML by (Weighted) Binary Classification
 - CSML by Regression
- A Story of Bacteria Classification with Doctor-Annotated Costs
- Summary

Which Fruit?

?

(image by Robert-Owen-Wahl from Pixabay)

apple

orange

strawberry

kiwi

(images by Pexels, PublicDomainPictures, 192635, Rob van der Meijden from Pixabay)

multiclass classification:

classify input (picture) to **one category** (label), **remember? :-)**

Which Fruits?

?: {apple, orange, kiwi}

(image by Michal Jarmoluk from Pixabay)

apple

orange

strawberry

kiwi

(images by Pexels, PublicDomainPictures, 192635, Rob van der Meijden from Pixabay)

multilabel classification: classify input to multiple (or no) categories

Label Powerset: Multilabel Classification via Multiclass (Tsoumakas, 2007)

multiclass w/ L=4 classes

4 possible outcomes {a, o, s, k}

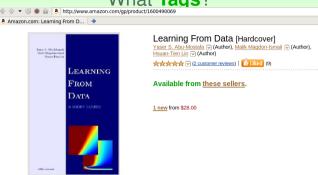
multilabel w/ L = 4 classes

```
2^4 = 16 possible outcomes 2^{\{a, o, s, k\}} \updownarrow \{\phi, a, o, s, k, ao, as, ak, os, ok, sk, aos, aok, ask, osk, aosk \}
```

- Label Powerset (LP): reduction to multiclass classification
- difficulties for large *L*:
 - computation: 2^L extended classes
 - sparsity: no or few example for some combinations

LP: feasible only for small L

What **Tags**?



?: {machine learning, data structure, data mining, object oriented programming, artificial intelligence, compiler, architecture, chemistry, textbook, children book, ... etc. }

another **multilabel** classification problem: **tagging** input to multiple categories

Binary Relevance: Multilabel Classification via Yes/No

binary classification

{yes, no}

multilabel w/ L classes: L yes/no questions

machine learning (Y), data structure (N), data mining (Y), OOP (N), AI (Y), compiler (N), architecture (N), chemistry (N), textbook (Y), children book (N), etc.

- Binary Relevance (BR): reduction to multiple isolated binary classification
- disadvantages:
 - isolation—hidden relations not exploited
 (e.g. ML and DM highly correlated, ML subset of AI, textbook & children book disjoint)
 - unbalanced—few yes, many no

BR: simple (& strong) benchmark with known disadvantages

Multilabel Classification Setup

Given

N examples (input \mathbf{x}_n , labelset \mathcal{Y}_n) $\in \mathcal{X} \times 2^{\{1,2,\cdots L\}}$

- fruits: $\mathcal{X} = \text{encoding(pictures)}, \mathcal{Y}_n \subseteq \{1, 2, \dots, 4\}$
- tags: $\mathcal{X} =$ encoding(merchandise), $\mathcal{Y}_n \subseteq \{1, 2, \dots, L\}$

Goal

a multilabel classifier $g(\mathbf{x})$ that **closely predicts** the labelset \mathcal{Y} associated with some **unseen** inputs \mathbf{x} (by exploiting hidden relations/combinations between labels)

multilabel classification:

hot and important with many real-world applications

From Labelset to Coding View

	labelset	apple	orange	strawberry	binary code
	$\mathcal{Y}_1 = \{o\}$	0 (N)	1 (Y)	0 (N)	$\mathbf{y}_1 = [0, 1, 0]$
80	$\mathcal{Y}_2 = \{a,o\}$	1 (Y)	1 (Y)	0 (N)	$\mathbf{y}_2 = [1, 1, 0]$
1	$\mathcal{Y}_3 = \{\text{o, s}\}$	0 (N)	1 (Y)	1 (Y)	$\mathbf{y}_3 = [0, 1, 1]$
	$\mathcal{Y}_4 = \{\}$	0 (N)	0 (N)	0 (N)	$\mathbf{y_4} = [0, 0, 0]$

(images by PublicDomainPictures, Narin Seandag, GiltonF, nihatyetkin from Pixabay)

subset \mathcal{Y} of $2^{\{1,2,\cdots,L\}} \iff$ length-L binary code y

LP Approach: What Performance Measure?

Goal: a classifier $g(\mathbf{x})$ that closely predicts the labelset \mathcal{Y} (code y) associated w/ x

LP Approach

1 encode: transform multilabel examples $(\mathbf{x}_n, \mathbf{y}_n)$ to multiclass examples (\mathbf{x}_n, Y_n) , where $Y_n =$ binary number of \mathbf{y}_n

$$\textbf{y} \rightarrow \textbf{Y} \hspace{0.2cm} \big| \hspace{0.2cm} [0,0,0] \rightarrow \textbf{0} \hspace{0.2cm} [0,0,1] \rightarrow \textbf{1} \hspace{0.2cm} [0,1,0] \rightarrow \textbf{2} \hspace{0.2cm} [0,1,1] \rightarrow \textbf{3}$$

- 2 learn: use any (regular) algorithm on multiclass examples to get classifier $\hat{g}(\mathbf{x})$
- 3 decode: for each new input \mathbf{x} , predict its code using $g(\mathbf{x}) = \text{binary representation of } \hat{g}(\mathbf{x})$

Measuring 'Closely Predict'

- regular multiclass algorithm: optimizes $[Y \neq \hat{g}(\mathbf{x})]$
- LP: correspondingly optimizes $[y \neq g(x)]$, called **subset** 0/1 **error**

subset 0/1 error: a strict measure for multilabel classification

BR Approach: What Performance Measure?

Goal: a classifier $g(\mathbf{x})$ that closely predicts the labelset \mathcal{Y} (code y) associated w/ x

BR Approach

- **1** encode: transform multilabel examples $(\mathbf{x}_n, \mathbf{y}_n)$ to binary examples $(\mathbf{x}_n, \mathbf{y}_n[\ell])$
- 2 learn: use any algorithm on binary classification examples to get classifier $\hat{g}_{\ell}(\mathbf{x})$
- 3 decode: for each new input x, predict its code using

$$g(\mathbf{x}) = [\hat{g}_1(\mathbf{x}), \hat{g}_2(\mathbf{x}), \dots, \hat{g}_L(\mathbf{x})]$$

Measuring 'Closely Predict'

- regular binary classification algorithm: optimizes $[y[\ell] \neq \hat{g}_{\ell}(x)]$
- BR: correspondingly optimizes $\frac{1}{I}|g(\mathbf{x}) \triangle \mathcal{Y}|$, called **Hamming error**

Hamming error: a simple measure for multilabel classification

Different Approaches Optimizes Different Measure

- LP: subset 0/1 error
- BR: Hamming error

Different (Assumed) Dependence Associated with Different Measure

(Dembczyński, 2012)

- strong conditional dependence: subset 0/1 error (need 'joint' optimization)
- no conditional dependence: Hamming error (can use 'marginal' optimization)

Different Applications Needs Different Measure

- information retrieval: F1 score (harmonic mean of precision & recall)
- tag recommendation: ranking error

Cost-Sensitive Multilabel Classification (CSML): design one approach for 'any' measure, just like CSMC

Setup: Cost-Sensitive Multilabel Classification (CSML)

Given

N examples, each (input \mathbf{x}_n , code \mathbf{y}_n) $\in \mathcal{X} \times \{1, 2, \dots, L\}$

and cost function $C \in \mathbb{R}^{2^L \times 2^L}$ with $C(\mathbf{y}, \mathbf{y}) = 0 = \min_{\mathbf{k} \in \{0,1\}^L} C(\mathbf{y}, \mathbf{k})$

Goal

a classifier $g(\mathbf{x})$ that pays a small cost $\mathcal{C}(\mathbf{y}, g(\mathbf{x}))$ on future **unseen** example (\mathbf{x}, \mathbf{y})

- called instance-based CSML: each instance evaluated separately
 —more complicated to solve other kinds of CSML (Hsieh, 2018)
- possible extension to example-dependent costs C_x like CSMC

will focus on 'class'-dependent instance-based CSML

Outline

- Cost-Sensitive Multiclass Classification
 - CSMC Motivation and Setup
 - CSMC by Bayesian Perspective
 - CSMC by (Weighted) Binary Classification
 - CSMC by Regression
- Cost-Sensitive Multilabel Classification
 - CSML Motivation and Setup
 - CSML by Bayesian Perspective
 - CSML by (Weighted) Binary Classification
 - CSML by Regression
- 3 A Story of Bacteria Classification with Doctor-Annotated Costs
- Summary

Approximate Bayes-Optimal Decision Revisited for CSML

if $q(\mathbf{x}, \mathbf{y}) \approx P(\mathbf{y}|\mathbf{x})$ well

AOBD for CSML

approximately good
$$g_q(\mathbf{x}) = \operatornamewithlimits{argmin}_{\mathbf{k} \in \{0,1\}^L} \sum_{\mathbf{y} \in \{0,1\}^L} q(\mathbf{x},\mathbf{y}) \mathcal{C}(\mathbf{y},\mathbf{k})$$

difficulty of directly using AOBD

difficulty in probability estimation:

 2^L outputs per x for q(x, y)

difficulty in cost calculation:

 2^L possible v in \sum to compute per k

difficulty in inference:

argmin over 2^L possible candidates k

ABOD: even harder for CSML than CSMC

Kev Idea: Estimate Probability with Decomposition

$$P(\mathbf{y} \mid \mathbf{x}) = P(\mathbf{y}[1] \mid \mathbf{x}) \cdot P(\mathbf{y}[2] \mid \mathbf{x}, \mathbf{y}[1]) \cdot P(\mathbf{y}[3] \mid \mathbf{x}, \mathbf{y}[1], \mathbf{y}[2]) \cdot \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$q(\mathbf{x}, \mathbf{y}) \qquad q_1(\mathbf{x}) \qquad q_2(\mathbf{x}, \mathbf{y}[1]) \qquad q_3(\mathbf{x}, \mathbf{y}[1], \mathbf{y}[2]) \qquad \cdots$$

- $q_{\ell}(\mathbf{x}, \mathbf{y}[1], \dots, \mathbf{y}[\ell-1])$: estimates $P(\mathbf{y}[\ell] = 1 \mid \mathbf{x}, \mathbf{y}[1, \dots, (\ell-1)])$ —learned with your favorite estimation algorithm, such as logistic regression
- if each q_ℓ accurate, multiplied q also accurate

$$q(\mathbf{x},\mathbf{y}) = \prod_{\ell=1}^L q_\ell^{\mathbf{y}[\ell]} (1-q_\ell)^{(1-\mathbf{y}[\ell])}$$

Probabilistic Classifier Chain (PCC) (Dembczyński, 2010): estimate q_{ℓ} 's to conquer difficulty in probability estimation

Key Idea: Sparsify $q(\mathbf{x}, \mathbf{y})$ with Representative \mathbf{y} 's

conjecture: P(y|x) usually small for most y's, hence many q(x,y) also small

draw typical **y** from $q(\mathbf{x}, \mathbf{y})$

(Dembczyński, 2011)

• Monte Carlo sampling from q_1 , q_2 , ..., q_ℓ sequentially

keep most probable $\mathbf{y}[1,\ldots,\ell]$

(Kumar, 2013)

beam search: keep B most probable predictions

calculate **necessary costs/statistics with representative y**to conquer difficulty in **cost calculation**

Key Idea: Derive Efficient Inference Rule for Specific ${\mathcal C}$

AOBD for CSML: approximately good
$$g_q(\mathbf{x}) = \underset{\mathbf{k} \in \{0,1\}^L \text{ representative } \mathbf{y}}{\operatorname{proposition}} \frac{q(\mathbf{x},\mathbf{y})\mathcal{C}(\mathbf{y},\mathbf{k})}{q(\mathbf{x},\mathbf{y})\mathcal{C}(\mathbf{y},\mathbf{k})}$$

—even with representative y, still exponentially many k

some \mathcal{C} allows efficient inference

• subset 0/1 error: $C(\mathbf{y}, \mathbf{k}) = 0$ iff $\mathbf{y} = \mathbf{k} \& 1$ otherwise

optimal $\mathbf{k} = \operatorname{argmax}_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})$ over representative \mathbf{y}

• Hamming error: $C(\mathbf{y}, \mathbf{k}) = \frac{1}{L} \sum_{\ell=1}^{L} [\![\mathbf{y}[\ell] \neq \mathbf{k}[\ell]]\!]$

optimal $\mathbf{k}[\ell] = \text{majority bit of } \mathbf{y}[\ell]$ over representative \mathbf{y}

AOBD for CSML: generally **restricted to specific** \mathcal{C} where difficulty in inference can be resolved

Mini-Summary of Key Ideas

AOBD for CSML: if $q(\mathbf{x}, \mathbf{y}) \approx P(\mathbf{y}|\mathbf{x})$ well

approximately good
$$g_q(\mathbf{x}) = \underset{\mathbf{k} \in \{0,1\}^L}{\operatorname{argmin}} \sum_{\mathbf{y} \in \{0,1\}^L} q(\mathbf{x},\mathbf{y}) \mathcal{C}(\mathbf{y},\mathbf{k})$$

difficulty of directly using AOBD revisited

- difficulty in probability estimation:
- difficulty in cost calculation:
- difficulty in inference:

- 2^L outputs per **x** for $q(\mathbf{x}, \mathbf{y})$
- 2^L possible ${\bf y}$ in \sum to compute per ${\bf k}$
- argmin over 2^L possible candidates **k**

corresponding key ideas

- estimate probability with decomposition
- sparsify probability estimation with representative y's
- derive efficient inference rule for specific $\mathcal C$

next: concrete approaches that combine key ideas

Putting It All Together: PCC for Subset 0/1 Error

- training: calculate $q_1, q_2, ..., q_L$, where q_ℓ learned with extended inputs $(\mathbf{x}_n, \mathbf{y}_n[1, ..., \ell-1])$ and outputs $\mathbf{y}_n[\ell]$
- inference: for each x,
 - get B most representative y by beam search (Kumar, 2013)
 - return $g(\mathbf{x}) = \underset{\mathsf{representative}}{\mathsf{argmax}} q(\mathbf{x}, \mathbf{y})$

Cons of PCC

- 'assymetric' to labels: non-trivial structural decision of label order
 —often coupled with uniform aggregation (Ensemble PCC) to improve performance
- somewhat time consuming during inference

```
special case of B=1: a classic approach called Classifier Chain (CC) (Read, 2009)
```

Putting It All Together: PCC for F1 Score

- training: calculate $q_1, q_2, ..., q_L$, where q_ℓ learned with extended inputs $(\mathbf{x}_n, \mathbf{y}_n[1, ..., \ell-1])$ and outputs $\mathbf{y}_n[\ell]$
- inference: for each x,
 - get B most representative y by sampling (Dembczyński, 2011)
 - estimate necessary statistics

$$\delta_{\ell,k} = \mathbb{E} \Big\{ \mathbf{y}[\ell] ext{ given } |\mathbf{y}| = k \Big\}$$

• return $g(\mathbf{x})$ with exact inference from $\delta_{\ell,k}$ using $O(L^3)$ computation

strength depends on whether $\delta_{\ell,k}$ estimated well enough with probability estimation + representative sampling

Mini-Summary of the PCC Family

with Efficient Inference Rules

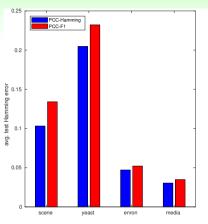
measure	inference rule
subset 0/1	mode of q
Hamming	threshold of 'marginal' q
ranking	sorted 'marginal' <i>q</i>
$\mathcal{C}(\mathbf{y},\mathbf{k}) = -rac{2 \mathbf{y}\cap\mathbf{k} }{ \mathbf{y} + \mathbf{k} }$: F1	statistics $\delta_{\ell,k}$ from q

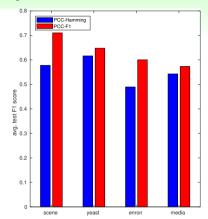
without Efficient Inference Rules

	measure	equation
	accuracy	$\mathcal{C}(\mathbf{y}, \mathbf{k}) = -\frac{ \mathbf{y} \cap \mathbf{k} }{ \mathbf{y} \cup \mathbf{k} }$
multi. objective cor	mbination	$C(\mathbf{y}, \mathbf{k}) = C_1(\mathbf{y}, \mathbf{k}) + C_2(\mathbf{y}, \mathbf{k})$

PCC: CSML approach 'in principle'

Cost-Sensitivity of PCC





(Dembczyński, 2011) cost-sensitive behavior:

PCC-Hamming better (↓) for Hamming; PCC-F1 better (↑) for F1

Outline

- Cost-Sensitive Multiclass Classification
 - CSMC Motivation and Setup
 - CSMC by Bayesian Perspective
 - CSMC by (Weighted) Binary Classification
 - CSMC by Regression
- Cost-Sensitive Multilabel Classification
 - CSML Motivation and Setup
 - CSML by Bayesian Perspective
 - CSML by (Weighted) Binary Classification
 - CSML by Regression
- 3 A Story of Bacteria Classification with Doctor-Annotated Costs
- Summary

A Naïve CSML Approach: Cost-Sensitive Label Powerset

Label Powerset (LP) Approach

multilabel regular cost multiclass

Cost-Sensitive LP (CSLP)

 $\mathsf{CSML} \xrightarrow{\mathsf{cost} \; \mathsf{function} \; \mathcal{C}} \mathsf{CSMC}$

Cons of CSLP

complexity, just like LP,

CSLP + ABOD : $O(2^L)$ estimates

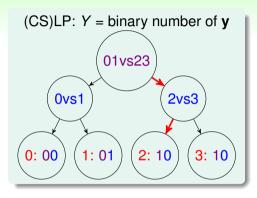
CSLP + CSOVO : $O(2^L \cdot 2^L)$ classifiers CSLP + FT : $O(2^L)$ internal nodes conquered by decomposition + special inference

sampling + efficient decoding (Yang, 2018)

sampling + node sharing (Li, 2014)

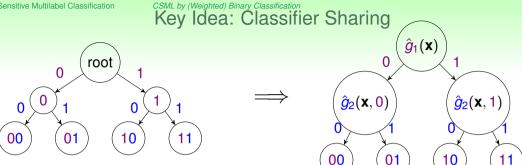
next: CSLP + FT

CSLP + FT for Prediction



- with 'binary number encoding' (proper ordering):
 - ℓ -th layer nodes (classifier) $\Leftrightarrow \ell$ -th label
 - FT: $O(\log K)$ prediction, O(K) training
 - $\log_2(2^L) = L$ predictions only :-)
 - still O(2^L) training complexity
 - actually, $2^L 1$ internal nodes

next: representing $2^{L} - 1$ internal nodes efficiently



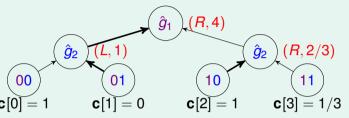
-1 nodes \Longrightarrow L classifiers

- root node $\hat{g}_1(\mathbf{x})$: just like BR on 1-st label
- 2-nd layer nodes 'shared' in $\hat{g}_2(\mathbf{x}, \tilde{\mathbf{y}}[1])$, where $\tilde{\mathbf{y}}[1] = \hat{g}_1(\mathbf{x})$

PCC
$$q_1(\mathbf{x}) \quad q_2(\mathbf{x}, \tilde{\mathbf{y}}[1]) \quad q_3(\mathbf{x}, \tilde{\mathbf{y}}[1], \tilde{\mathbf{y}}[2]) \quad \cdots$$

CSLP + FT $\hat{g}_1(\mathbf{x}) \quad \hat{g}_2(\mathbf{x}, \tilde{\mathbf{y}}[1]) \quad \hat{g}_3(\mathbf{x}, \tilde{\mathbf{y}}[1], \tilde{\mathbf{y}}[2]) \quad \cdots$

even with classifier sharing, $2^{L} - 1$ weighted binary examples per $(\mathbf{x}_{n}, \mathbf{y}_{n})$ in FT

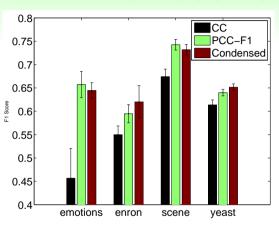


- not all binary examples relevant to training \hat{g}_ℓ
 - —prediction goes through one path anyway

Condensed FT (CFT) (Li, 2014) :

keeping only those examples **near prediction path** for training \hat{g}_ℓ

CFT versus PCC on F1 Score



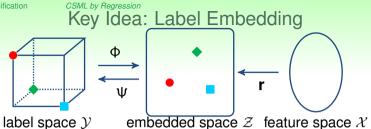
(Li, 2014)

- CFT certainly better than CC
- CFT can be better than PCC

CFT competitive within 'chaining approaches' for CSML

Outline

- Cost-Sensitive Multiclass Classification
 - CSMC Motivation and Setup
 - CSMC by Bayesian Perspective
 - CSMC by (Weighted) Binary Classification
 - CSMC by Regression
- Cost-Sensitive Multilabel Classification
 - CSML Motivation and Setup
 - CSML by Bayesian Perspective
 - CSML by (Weighted) Binary Classification
 - CSML by Regression
- 3 A Story of Bacteria Classification with Doctor-Annotated Costs
- Summary



Training Stage

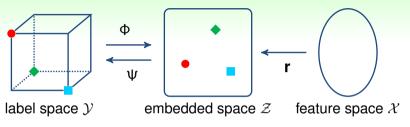
- embedding function Φ: label vector y → embedded vector z
- learn a regressor **r** from $\{(\mathbf{x}_n, \mathbf{z}_n)\}_{n=1}^N$

Predicting Stage

- for testing instance \mathbf{x} , predicted embedded vector $\tilde{\mathbf{z}} = \mathbf{r}(\mathbf{x})$
- decoding function Ψ : $\tilde{\mathbf{z}} \rightarrow \text{predicted label vector } \tilde{\mathbf{y}}$

label embedding: popular for extracting joint information of labels

Cost-Sensitive Label Embedding



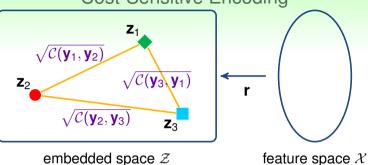
Existing Works

- label embedding: PLST (Tai, 2012), CPLST (Chen, 2012), FaIE (Lin, 2014), RAKEL (Tsoumakas 2007), etc.
- cost-sensitivity: CFT (Li, 2014), PCC (Dembczyński, 2010), etc.
- cost-sensitivity + label embedding: this work

Cost-Sensitive Label Embedding: considering C in Φ and Ψ

CSML by Regression

Cost-Sensitive Encoding



Training Stage

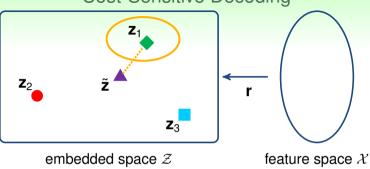
- distances between embedded vectors \Leftrightarrow cost information
- larger distance $d(\mathbf{z}_i, \mathbf{z}_i) \Leftrightarrow \text{higher cost } \mathcal{C}(\mathbf{y}_i, \mathbf{y}_i)$

 $d(\mathbf{z}_i, \mathbf{z}_i) \approx \sqrt{\mathcal{C}(\mathbf{y}_i, \mathbf{y}_i)}$: by

multidimensional scaling (Huang, 2017) or deep learning (Chiu, 2018)

CSML by Regression

Cost-Sensitive Decoding



Predicting Stage

- for testing instance \mathbf{x} , predicted embedded vector $\tilde{\mathbf{z}} = \mathbf{r}(\mathbf{x})$
- find nearest embedded vector z_q of ž

cost-sensitive decoding: $g(\mathbf{x}) = \text{corresponding } \mathbf{y}_q$

Theoretical Explanation

Cost Bound Theorem (Huang, 2017)

$$\mathcal{C}(\mathbf{y}, \tilde{\mathbf{y}}) \leq 5 \underbrace{\left(\left(d(\mathbf{z}, \mathbf{z}_q) - \sqrt{\mathcal{C}(\mathbf{y}, \mathbf{y}_q)} \right)^2 + \underbrace{\|\mathbf{z} - \mathbf{r}(\mathbf{x})\|^2}_{\text{regression error}} \right)}_{\text{regression error}}$$

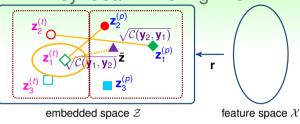
Optimization

- embedding error → multidimensional scaling
- regression error \rightarrow any regression \mathbf{r}

challenge: asymmetric cost function vs. symmetric distance?

i.e.
$$C(\mathbf{y}_i, \mathbf{y}_j) \neq C(\mathbf{y}_j, \mathbf{y}_i)$$
 vs. $d(\mathbf{z}_i, \mathbf{z}_j)$

CSML by Regression Key Idea: Mirroring Trick



- two roles of \mathbf{y}_i : ground truth role $\mathbf{y}_i^{(t)}$ and prediction role $\mathbf{y}_i^{(p)}$
 - $\sqrt{\mathcal{C}(\mathbf{y}_i, \mathbf{y}_i)} \Rightarrow \text{predict } \mathbf{y}_i \text{ as } \mathbf{y}_i \Rightarrow \text{for } \mathbf{z}_i^{(t)} \text{ and } \mathbf{z}_i^{(p)}$
 - $\sqrt{\mathcal{C}(\mathbf{y}_i, \mathbf{y}_i)} \Rightarrow \text{predict } \mathbf{y}_i \text{ as } \mathbf{y}_i \Rightarrow \text{for } \mathbf{z}_i^{(p)} \text{ and } \mathbf{z}_i^{(t)}$
- learn regression function r from $\mathbf{z}_{i}^{(p)}, \mathbf{z}_{2}^{(p)}, ..., \mathbf{z}_{L}^{(p)}$
- find nearest embedded vector of $\tilde{\mathbf{z}}$ from $\mathbf{z}_{1}^{(t)}, \mathbf{z}_{2}^{(t)}, \dots, \mathbf{z}_{t}^{(t)}$

mirroring trick: handle asymmetric cost with embedding flexibility

Cost-Sensitive Label Embedding with Multidimensional Scaling (CLEMS)

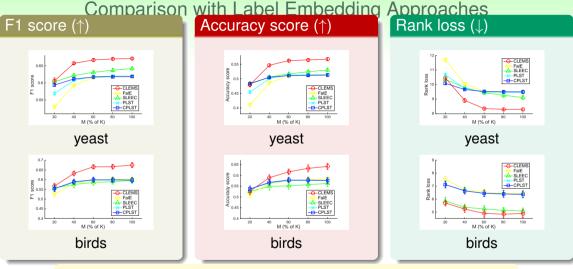
training stage of CLEMS (Huang, 2017)

- given training instances $\mathcal{D} = \{(\mathbf{x}_n, \mathbf{y}_n)\}_{n=1}^N$ and cost function \mathcal{C}
- apply mirroring trick to set up $\mathbf{z}_n^{(t)}$ and $\mathbf{z}_n^{(p)}$ for label vector \mathbf{y}_n
- compute embedding function $\Phi \colon \mathbf{y}_n \to \mathbf{z}_n^{(p)}$ by multidimensional scaling such that $d(\mathbf{z}_m^{(t)}, \mathbf{z}_n^{(p)}) \approx \sqrt{\mathcal{C}(y_n, y_m)}$
- learn a regression function \mathbf{r} from $\{(\mathbf{x}_n, \mathbf{z}_n^{(p)} = \Phi(\mathbf{y}_n))\}_{n=1}^N$

predicting stage of CLEMS

- given the testing instance x
- obtain the predicted embedded vector by $\tilde{\mathbf{z}} = \mathbf{r}(\mathbf{x})$
- prediction $\tilde{\mathbf{y}} = \Psi(\tilde{\mathbf{z}}) = \Phi^{-1}(\text{nearest neighbor}) = \Phi^{-1}(\text{argmin } d(\mathbf{z}_n^{(t)}, \tilde{\mathbf{z}}))$

minor details: embed **subset of**, rather than 'all', $\{0,1\}^L$ for efficiency



CLEMS: best label embedding approach across different criteria

Cost-Sensitive Multilabel Classification CSML

CSML by Regression

Comparison with Cost-Sensitive Algorithms									
data F1 score (↑)		Accuracy score (†)			Rank loss (↓)				
uala	CLEMS	CFT	PCC	CLEMS	CFT	PCC	CLEMS	CFT	PCC
emot.	0.676	0.640	0.643	0.589	0.557	_	1.484	1.563	1.467
scene	0.770	0.703	0.745	0.760	0.656	_	0.672	0.723	0.645
yeast	0.671	0.649	0.614	0.568	0.543	_	8.302	8.566	8.469
birds	0.677	0.601	0.636	0.642	0.586	_	4.886	4.908	3.660
med.	0.814	0.635	0.573	0.786	0.613	_	5.170	5.811	4.234
enron	0.606	0.557	0.542	0.491	0.448	_	29.40	26.64	25.11
lang.	0.375	0.168	0.247	0.327	0.164	_	31.03	34.16	19.11
flag	0.731	0.692	0.706	0.615	0.588	_	2.930	3.075	2.857
slash	0.568	0.429	0.503	0.538	0.402	_	4.986	5.677	4.472
CAL.	0.419	0.371	0.391	0.273	0.237	_	1247	1120	993
arts	0.492	0.334	0.349	0.451	0.281	_	9.865	10.07	8.467
EUR.	0.670	0.456	0.483	0.650	0.450	_	89.52	129.5	43.28

• generality for CSML: CLEMS = CFT > PCC

• performance: CLEMS \approx PCC > CFT

• speed: CLEMS \approx PCC > CFT

CLEMS: very competitive for CSML

Work on CSMC

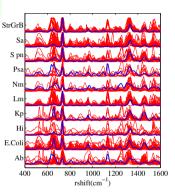
	binary	multiclass
regular	well-studied	well-studied
cost-sensitive	known (Zadrozny, 2003)	past 10 years (our works, among others)

selected works of ours

- cost-sensitive SVM (Tu, ICML '10) via one-sided regression
- cost-sensitive one-versus-one (Lin, ACML '14)
- cost-sensitive deep learning (Chung, IJCAI '16) via one-sided regression

why are people not using those cool ML works for their applications?

Issue 1: Where Does Cost Come From?



automatic classification from spectrum to bacterium (Jan, 2011)

are all mis-prediction costs equal?

A Real Medical Application: Bacteria Classification

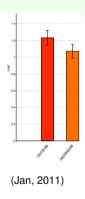
The Problem

- Gram-positive as Gram-positive: small cost Gram-positive as Gram-negative: big cost
- cost matrix averaged from two doctors:

	Ab	Ecoli	HI	KP	LM	Nm	Psa	Spn	Sa	GBS
Ab	0	1	10	7	9	9	5	8	9	1
Ecoli	3	0	10	8	10	10	5	10	10	2
HI	10	10	0	3	2	2	10	1	2	10
KP	7	7	3	0	4	4	6	3	3	8
LM	8	8	2	4	0	5	8	2	1	8
Nm	3	10	9	8	6	0	8	3	6	7
Psa	7	8	10	9	9	7	0	8	9	5
Spn	6	10	7	7	4	4	9	0	4	7
Sa	7	10	6	5	1	3	9	2	0	7
GBS	2	5	10	9	8	6	5	6	8	0

issue 2: is cost-sensitive classification really useful?

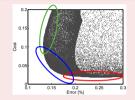
Cost-Sensitive vs. Traditional on Bacteria Data



cost-sensitive better than traditional; but why are people still not using those cool ML works for their applications? :-)

Issue 3: Error Rate of Cost-Sensitive Classifiers

The Problem



- cost-sensitive classifier: low cost but high error rate
- traditional classifier: low error rate but high cost
- how can we get the blue classifiers?: low error rate and low cost

cost-and-error-sensitive:
more suitable for real-world medical needs

Improved Classifier for Both Cost and Error

(Jan, 2012)

Cost	
iris	≈
wine	e
glass	s ≈
vehicl	e ≈
vowe	el 📗
segme	ent 🔘
dna	0
satima	ge
usps	
Z00	
splice	
ecoli	i
soybea	an

Error		
	iris wine glass vehicle vowel segment dna satimage usps zoo splice ecoli soybean	00000000000000

now, are people using those cool ML works for their applications? :-)

Lessons Learned from CSMC Research in Applications

?

bird flu

cold-infected

healthy

- more realistic (generic) in academia ≠ more realistic (feasible) in application
 e.g. the 'cost' of inputting a cost matrix? :-)
- cross-domain collaboration importante.g. getting the 'cost matrix' from domain experts
- not easy to win human trust
 —humans are somewhat multi-objective

important yet **challenging** to use CSMC/CSML in practical applications

Summary

- cost-sensitive multiclass classification: class/example-dependent
 - Bayesian: MetaCost (Domingos, 1999)
 - non-Bayesian: Data Space Expansion (Abe, 2004) (to multiclass), Cost-Sensitive One-Versus-One (Lin, 2014), Filter Tree (Beygelzimer, 2009), . . . (to binary), One-Sided Regression (Tu, 2010) (to regression)

—some SVM implementations here:

http://www.csie.ntu.edu.tw/~htlin/program/cssvm/

- cost-sensitive multilabel classification:
 - Bayesian: PCC (Dembczyński, 2010)
 - non-Bayesian: Condensed Filter Tree (Li, 2014) (to binary), CLEMS (Huang, 2017) (to regression)
- application story:
 - cost-and-error-sensitive learning for bacteria classification (Jan, 2012)

Thank you. Questions?