Continual Visual Learning

Karteek Alahari
Inria, France

http://thoth.inrialpes.fr/~alahari/

42

ca—

N Lille

Nord Europe
Saclay Paris
lle-de-France /
\. [] Nancy
Grand Est
_/| Strasbourg
Rennes
Bretagne Atlantique
Nantes
e Lyon
Bordeaux Grenoble
. Contors Sud-Ouvest ' Rhéne-Alpes
.]
® Local offices ‘ Sophia Antipolis
. Méditerranée
Pau N [|

Montpellier

KA: Incremental Learning

Inria Grenoble

Continual Learning ?
Incremental learning
Lifelong learning
Sequential learning

Never-ending Learning

A Continual Learning Scenario

* Growing up in India

KA: Incremental Learning

A Continual Learning Scenario

* And then during travels

KA: Incremental Learning

A Continual Learning Scenario

 And then during travels

But can still remember the best* bread!

Ican solve Ican solve [can solve
task 1. tasks 1&2. tasks 1&28&3.

-H-‘L F -H-“- L

@ - 7,@ _ 2 7&}‘ mp -
Learnlng Learnmg Learning
Task 1 Task 2 Task 3

KA: Incremental Learning Slide credit: Hung-yi Lee

Standard Machine Learning

TRAIN — VALIDATION — TEST

All sampled from the same distribution
-> benchmarks and academic datasets
-> real-world systems

-> embodied learning «

Slide credit: T. Tuvytelaats

Slide credit: T. Tuvteladrs

KA: Incremental Learning

Incremental Learning Setup

- Task-incremental learning
- Class-incremental learning
- Domain-incremental learning

KA: Incremental Learning Slide credit: T. Tuytelaats

Incremental Learning

* Aclassical problem in machine learning, e.g.,

[Carpenter et al. ’92, Cauwenberghs and Poggio '00, Polikar et al. ’01,
Schlimmer and Fisher ’86, Thrun '96]

e Some methods

— Zero-shot learning, e.g., [Lampert et al. 13]
No training step for unseen classes

— Continuously update the training set, e.g., [Chen et al. ’13]
Keep data and retrain

— Use a fixed data representation, e.g., [Mensink et al. ’13]
Slmpllfy the learning pI"Oblem KA: Incremental Learning

12

Brute Force Solution
(non-incremental)

~ (old task 1)
Original model (test image)%---mii
— (old task m)

Input: Target.:
-

: - _old tasks’
Joint training image for _ ground truth
B ; _ each task - -

golden” baseline -
[random initialize + train |, DOCW task
] fine-tune [l ground truth

] unchanged KA: Incremental Learning Figures from [Li and Hoiem 20186]

Brute Force Solution
(non-incremental)

Retrain full model with both old and new data

 Computationally expensive

* Needs access to old data
e Storage capacity limitations
* Privacy issues
 Scalability issues

Feature
Extraction

KA: Incremental Learning

Slide credit: T. Tuytelaars

\ 4

Classification

000~ 00®

14

Why not brute force ?

e No access to all the data
e Can not store all the data

* Access to only a previously learned model, e.g.,
trained by others

Naive Solution 1

~ (old task 1)
Original model (test image)%...ms
~ (old task m)

Input: Y Target:
Feature extraction new tad{ﬁ»ﬁ
mage —
‘ | new task
g

[random initialize + train round truth
| fine-tune
| unchanged KA: Incremental Learning Figures from [Li and Hoiem 2016]

Naive Solution 1

* Finetune only last layer using new data only
— Leads to suboptimal results

c O

s| |0

Feature o O

. =1 .
Extraction ‘a :
© O

S \9J

-, |O©

@

KA: Incremental Learning Slide credit: T. Tuytelaars

Naive Solution 2

~ (old task 1)
Original model (test image)%---m_i
~ (old task m)

Input: L Target:
: : new task .
Fine tuning image N
|, new task

[random initialize + train ground truth
] fine-tune
| unchanged KA: Incremental Learning Figures from [Li and Hoiem 2018]

Naive Solution 2

* Finetune the network using new data only
— Leads to catastrophic forgetting

c O

s| |0

Feature o O

. =1 .
Extraction ‘a :
© O

Z \9J

> O

@

KA: Incremental Learning Slide credit: T. Tuytelaats

Incremental Learning: Computer Vision Task

CNN

CNN

—

:

t
lhorse images

raining on

%

horse

20

How well does network B perform ?

Training with

method the initial set of classes old new all
A(1-10) 65.8 - i

+B(11-20) Taining with 128 645 387
A(1-20) the new set of classes 684 713 69.8

k Baselineg, i.e., training
with all the classes

No guidance for retaining the old classes

[Catastrophic forgetting: McCloskey and Cehenrd989; Ratcliff 1990]

21

Incremental Learning: The Rules |

Learn one task after the other

Without storing (many) data from previous tasks

Without memory footprint growing (significantly) over time
Without (completely) forgetting old tasks

Slide credit: T. Tuvytelaats

What else will we see today?

* Flavour of different approaches:
1. Regularization based: LwF, EBLL, EWC, SI, MAS, IMM, ...

Regularization-based Models

 When training a new task,
— add a regularization term to the loss
— i.e., term to penalize catastrophic forgetting

 R1: data-focused methods
* R2: model/prior-focused methods

Slide credit: T. Tuvytelaatrs

Data-focused Regularization:
Learning without Forgetting

 Knowledge distillation loss
— i.e., preservation of responses

c| (@
s| O
-+ . ,
New task input —» Feature 8| |O| Previous model’s output e
Extraction = : | for old tasks
(%)
s| |O
S O
— 8 New task annotations — @

[Li & Hoiem 2016] KA: Incremental Learning Slide credit: T. Tuvtelaars

Data-focused Regularization:

Learning without Forgetting

Simple method; good results for related tasks

e i Poor results for unrelated tasks

? Need to store the old model

[LI & Hoiem 2016] KA: Incremen tal Learning

26

Model-focused Regularization

* Penalize changes to ‘important’ parameters

LO)=Lp0") +a) \(6r— 0771

¢ J
Y k Y
Loss on new task(s) T Regularization

Different variants possible for
“importance” and regularization

Model-focused Regularization

* Elastic weight consolidation [Kirkpatrick et al., 2017]
— Indiv. penalty for each previous task Z Z Xg—i(e;g — Q,Z_i)z

— Fisher information matrix for \ koi<n
o Lowerror fortask B == EWC

= Low error for task A = L2
T == NO penalty

Figure from paper KA: Incremental Learning 28

Model-focused Regularization

* Elastic weight consolidation [Kirkpatrick et al., 2017]
— Indiv. penalty for each previous task Z Z Xg—i(e;’; — QZ_i)z

— Fisher information matrix for \ koi<n

Agnostic to architecture; Good results empirically

¢ U Only valid locally

? Need to store importance weights

KA: Incremental Learning 29

Model-focused Regularization

* Memory aware synapses [Aljundi et al., 2018]
— Considers only the previous task Z Ak (07 — 077 1)?

. . k
— Change in gradients for A
A Y AY
F F

X X

L—— O0—0000 > >
(a) 00000000
T1 Training Importance estimation using unlabelled data T2 Training

FIgU re from paper KA: Incremental Learning 30

Model-focused Regularization

* Memory aware synapses [Aljundi et al., 2018]

— Considers only the previous task Z Ae(OF —0771)°

— Change in gradients for A -

Agnostic to architecture; Leverages data & output

(i) Only valid locally

? Need to store importance weights

KA: Incremental Learning

31

Model-focused Regularization

* Two examples
— Elastic weight consolidation [Kirkpatrick et al., 2017]
— Memory aware synapses [Aljundi et al., 2018]

e Other alternatives

— Path Integral / Synaptic Intelligence: large changes during
training [Zenke et al., 2017]

— Moment matching [Lee et al., 2017]
— Pathnet [Fernando et al., 2017]

What else will we see today?

* Flavour of different approaches:

2. Rehearsal / Replay: iCaRL, DGR, GEM, ...

Rehearsal / Replay-based methods

e Store a couple of examples from previous tasks

e Or produce samples from a generative model

* But
— How many?
— How to select them?
— How to use them?

iCaRL: Incremental classifier and
representation learning

e Selects samples that are closest to the feature mean
of each class

 Knowledge distillation loss [Hinton et al.’14]

* Clever use of available memory (see the following)

[Rebuffi et al. 2017]

iCaRL: Incremental classifier and
representation learning

Split the problem into:
* learning features, and then
e using NCM classifier

[Rebuffi et al. 2017]

Algorithm iCaRL INCREMENTALTRAIN

input X*,..., X% //training examples in per-class sets

input K // memory size

require © // current model parameters

require P = (Py,...,P,_1) // current exemplar sets
© <+ UPDATEREPRESENTATION(X®,..., X%;P,0)
m <« K/t // number of exemplars per class

fory=1,...,s—1do
P, <~ REDUCEEXEMPLARSET(P,, m)
end for
fory=s,...,tdo
P, <— CONSTRUCTEXEMPLARSET (X, m, ©)
end for

P« (Py,...,P) // new exemplar sets

KA: Incremental Learning

36

iCaRL: Incremental classifier and
representation learning

Algorithm iCaRL CLASSIFY

input z // image to be classified
require P = (Py,...,P;) // class exemplar sets
require ¢ : X — R¢ // feature map

fory=1,...,tdo

1
Py < 5 Z o (p) // mean-of-exemplars
Y
end for
y* < argmin ||¢(z) — py|| // nearest prototype
y=1,...,t
output class label y*

[REbUffI et al. 2017] KA: Incremental Learning

37

iCaRL: Incremental classifier and
representation learning [Rebuffi et al.’17]

[Rebuffi et al. 2017]

Algorithm iCaRL UPDATEREPRESENTATION

input X ..., X* //training images of classes s, ..., t
require P = (Py,...,Ps_1) /] exemplar sets
require © // current model parameters

// form combined training set:
D+ |J{@y) :zex’}u | {(z,y) :z€ P’}
y=8,...,t y=1,...,s—1
/1 store network outputs with pre-update parameters:
fory=1,...,s—1do
q; + gy(z;) forall (z;,-) € D
end for
run network training (e.g. BackProp) with loss function

t
£©)= _Z [Z‘sy:yi log gy (i) + dyy; log(1—gy(:))
(z5,y:)€ED y=s
s—1

+ ¥ log gy (@) +(1—Y) log(1—g, (w:))]

y=1

that consists of classification and distillation terms.

KA: Incremental Learning

e
B

&— C(lassification loss

& Distillation loss:

Comparing old vs new

38

=)

iCaRL: Incremental classifier and
representation learning

Clever use of available memory

Potential issues with storing data, e.g., privacy

Limited by the memory capacity (the more the better)

[REbUffI et al. 2017] KA: Incremental Learning

39

What else will we see today?

* Flavour of different approaches:

2. Rehearsal / Replay: iCaRL, DGR, GEM, ...

Deep Generative Replay

Scholar

o The model “Scholar” is composed of:

Generator

« agenerator + a solver (classifier)

o The generator and the solver are updated in every
incremental step

[Shin et al. 2017]

Figure from the paper

Deep Generative Replay

Training procedure:
Scholary
) 4

e At taskt, we train a new Scholar SChOvla‘rz

e with data from the task t, and Scholar,

e data generated by the previously v
' Schol
trained Scholar at task t-1 choary

[Shin et al. 2017]
Figure from the paper Slide courtesy: A. Massenet

Deep Generative Replay

Training procedure (Generator): Current Task
m_l New Scholar
e With data from task t, and Current . x
Replay x' ——
e data generated by the previously
trained Scholar for task t-1 Old Scholar

[Shin et al. 2017]
Figure from the paper KA: Incremental Learning Slide courtesy: A. Massenet 43

Deep Generative Replay

larget = Label

Training procedure (Solver): Current Task /'

e With data from task t, and Current | x y :|

New Scholar

Replay = x' y'

e Data from generator and solver

Generator

of the previously trained Scholar
for task t-1

0ld Scholar

[Shin et al. 2017]
Figure from the paper KA: Incremental Learning Slide courtesy: A. Massenet 44

Deep Generative Replay

Avoids memory issues | Task, g Scholary

} Scholar,
. 4

} Scholars

. v
} Scholary

No control over the class of the generated samples

Accumulation of errors

[Shin et al. 2017]
Figure from the paper KA: Incremental Learning Slide courtesy: A. Massenet 45

What else will we see today?

* Flavour of different approaches:

3. Architecture based: PackNet, progressive nets, HAT, ...

Architecture-based

O

O
O
O O

O
O O
O
O

0000
o 00O
0000

OO O
O00O0O

O000OO0O
0o 000
OO000Oe

_ JoX X X©
©0000

(a) Initial filter for Task |

60% pruning + re-training

(b) Final filter for Task |

(c) Initial filter for Task I

)

PackNet [Mallya & Lazebnik’17]

Figure from the paper

training

KA: Incremental Learning

33% pruning + re-training

(d) Final filter for Task Il

(e) Initial filter for Task Ill

N~

training

47

Architecture-based

Fixed memory consumption

Needs the total number of tasks

Avoids forgetting

PackNet [Mallya & Lazebnik’17]

KA: Incremental Learning

48

A Comparative Analysis

* Tinylmagenet: small, balanced, class-incremental
* iNaturalist: large-scale, unbalanced, task-incremental

Tiny Imagenet iNaturalist
Tasks 10 10
Classes per task 20 5to 314
Training data per task 8k 0.6k to 66k
Validation data per task 1k 0.1k to 9k
Task Constitution random class selection supercategory

* Fair way of setting hyperparameters
(stability-plasticity tradeoff)

[Lange et al., 2020]

KA: Incremental Learning 49

Comparative Evaluation (Tinylmagenet)

- finetuning: 21.30 (26.90) —— PackNet: 49.13 (0.00) SI: 33.93 (15.77) —— MAS: 46.90 (1.58) —— LwF: 41.91 (3.08)
~ joint*: 55.70 (n/a) HAT: 43.57 (0.00) EWC: 42.43 (7.51) —— mode-IMM: 36.89 (0.98) —— EBLL: 45.34 (1.44)
Evaluation on Task
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
601
y >
> >
501 N = ‘
. e EN
= 49 SRS
5 /
£ 30 >4
= :
&)
O
< i
201 i,
10- ----- |
0 T2 T3 T4 T5 T6 T7 T8 T9 T10
Training Sequence Per Task
Regularization & Architecture based
Image credit: [Lange et al., 2020] KA: Incremental Learning 50

Comparative Evaluation (Tinylmagenet)

-+ finetuning: 21.30 (26.90) R-PM 4.5k: 36.09 (10.96)

R-FM 4.5k: 37.31 (9.21) —— GEM 4.5k: 45.13 (4.96) iCaRL 4.5k: 47.27 (-1.11)
» joint*: 55.70 (n/a) -+ R-PM 9k: 38.69 (7.23) =+ R-FM 9k: 42.36 (3.94) —r— GEM 9k: 41.75 (5.18) —— iCaRL 9k: 48.76 (-1.76)
Evaluation on Task
T1 T2 T3 T4 TS5 T6 T7 T8 T9 T10
60 N
N >
> p
50 i
Dl
© 401 | A\
>
&) 2 i3
5309 i _
O : KN :
o H H :
< | ‘= :
201 ¢]
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Training Sequence Per Task
Rehearsal/Replay based
Image credit: [Lange et al., 2020]

KA: Incremental Learning 51

General Trends

* Rehearsal/replay based methods only pay off when
storing significant amount of exemplars

* PackNet results in no-forgetting and produces top
results

e MAS more robust than EWC

Slide credit: T. Tuytelaars

What kind of model should | use ?

* Larger models give more capacity (but: overfitting)
* Wide is better than deep

* Regularization may interfere with incremental learning
* Dropout usually better than weight decay

Slide credit: T. Tuytelaars

What else will we see today?

e More than classification?

Mitigate Catastrophic Forgetting
* Learning without forgetting [Li and Hoiem 2016]

Input: Target:

— old model’s Tasks defined on a new dataset
new task G@» : response for
old tasks
image T Focus on image classification
. new task (rare co-occurrence of old and new)
ground truth

* |CaRL [Rebuffi et al. 2017]

Class 1 Class 3 Decouple classifier and feature

‘ - learning

class incremental learner

‘/ Rely on a subset of the old data
Class 2
& KA: Incremental Learning 55

Mitigate Catastrophic Forgetting

e Elastic weight consolidation [Kirkpatrick et al., 2017]

— Selectively slowing down learning on weights
Limited to specific settings

Focus on image classification
(rare co-occurrence of old and new)

* Other attempts, e.g., [Aljundi et al., 2018, Jung et al., 2016,
Mallya and Lazebnik, 2017, Risin et al., 2014, Rusu et al., 2016]

KA: Incremental Learning

56

Mitigate Catastrophic Forgetting

Lack of methods for
incremental learning of object detectors

57

An approach

* Incremental Learning of Object Detectors without
Catastrophic Forgetting [Shmelkov et al., 2017]

KA: Incremental Learning

58

Summary

* Flavour of different approaches:
1. Regularization based: LwF, EBLL, EWC, SI, MAS, IMM, ...
2. Rehearsal / Replay: iCaRL, DGR, GEM, ...
3. Architecture based: PackNet, progressive nets , HAT, ...

e More than classification?

 Takeaways

Looking to the future

Desiderata

— Constant memory

— Task agnostic: Some recent advances [Rao et al., NeurlPS’19]
— Forgetting gracefully

— Datasets

“I don’t like datasets, it’s more a problem
than a solution” — heard at ICCV 2019

KA: Incremental Learning

60

