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Markov Decision Process (MDP)

At each timestep t ...

The agent observes the state s;

Then take the action according to the policy n: S — A

reward

R,
m nvironment
A

Receive the reward and next state.




Deep Reinforcement Learning

AGENT ENVIRONMENT
-State S € S

- Take action a € A

e a e

NG

w -Getreward 7
-New state s’ € S

e The goal of the agent is to maximize the expected sum of rewards

Zt E(Staat)pr [T(Stv at)]



The Goal of MDP

maximize the discounted accumulated reward at each
timestep t.

Gt — ZT— (ST,CLT)

Why discounting ?
In theory, it is for convergence proof.
In practice, it is to prevent unrealistic planning.




How does RL solve MDP

e Recap: the objective of MDP

G

T
c= > 7 (s a)
1=t

» RL searches 7" according to the following criteria:

T = arg max
[

*E[Gt‘st = s,a; = 7m(s;)],Vs €S

e Policy can be a deterministic function or a probability

distribution

a; = m(s;) Deterministic function
a; ~ m(ay|s;) Probability distribution



Categories of RL

We only list a few branches of RL algorithms.

Episodic

PILCO Actor Critic, Conservative
REPS Natural Actor Critic Policy Iteration LSPI
Direct Policy
Search

"\ Value-Based
RL

Evolutionagy Policy Model-based REPS Advantage Q-Learning,
Strategieq Gradients PS by Trajectory Weighted Fitted Q
CMA-ES eNAC Optimization Regression



Policy gradient

« Parameterize the policy as a probability distribution with §: g

» Learn a policy by maximizing the objective function: J(0)

J(@) = E,Srvdﬁé??awwe :Qﬂ<8, CL)] d"(s) = lim p(s = s¢|sg, )

t—00

Vf}e](g) — Eswd“@,awﬂ'e :QW (,S? (L)Vglogﬂ'g(a-’S)]
QW<S;a) — E[thst — 5,4t = a4, W]

e Take an action by:

a; ~ mp(alst)
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Q-learning

e Learn the state-action value function:
Q(s,a) = E|Gy|s; = s, a; = a

« Update the Q-function according to:

Q(st, ar) < Q(st, ar)+a(r(se, ar)+y max Q(St+1,a)—Q(s¢,ar))

e Take an action by:

a; = argmax (s, a)
a

11



Comparison - Q-learning v.s. Policy Gradient

e Q-learning is an off-policy algorithm as the training data
can be generated by an arbitrary policy

Q(St, ar) < Q(st, ar)+a(r(se, ar)+y max Q(St+1,a)—Q(5¢, ar))

e Policy gradient is an on-policy algorithm as the training
data must be from the current policy

The stationary distribution of the current policy

J(H) — ﬂgr\/d@ LA~ [QW(& CL)}

12



Actor-Critic

 Learn the policy and state/state-action value function concurrently
7T9(at|8t) V(s) = E[Gt]st — s} Q(s,a) = E[Gt\st = 5. ap = a.}

« Use policy gradient to learn a policy:
maximize J(0") = Eswam amr, | Vo, ()] J(07) = Egeimo am, | Qo (5, a)]

e Use Q-learning to learn a state/state-action value function:

minimize J(0") = Eq i a,om, [(T(St, at) +yVov (si41) — VHV(St))Z]
J(0%) = Egaro apmy | (7(S2, 1)+ max Qpa(st41, @) —Qpe (81, ar))’]

« Take action by:

a; ~ mg(alsy)

13
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Why DRL?

e The traditional RL employs simple models (e.g. single layer
neural networks)

» They fail on the high-dimensional state space (the curse of
dimensionality)

000000
SECTOR 01

(210 x 160 x 3)

Quite a large
Size

15



The Basic Concept of DRL

« Embrace the expressive power of deep neural network
(DNN)

1 Reward

Take _|Environment
action

parameter 6

CNN, LSTM,
FC, ...

Observe state

16



The Contemporary DRL Algorithms

e Deep Q-Network (DQN)

e Deep Deterministic Policy Gradient (DDPG)
e Asynchronous Advantage Actor-Critic (A3C)
e Trust Region Policy Optimization (TRPO)

« Maximum Entropy RL



The Main Concepts of DQN

e Parameterize the Q-function with a DNN

 Enhance the data-efficiency b

Make it more stable

e Enhance the performance by t
functions

J(H) — 4:.St,at,st+1fvz [(T(Sta at)+’Y mga? Q@‘ (St—l—la a)'_QH(Sb at))Q]

(Qp— is a Q-function of the target network

Z# is experience replay (buffer)
consisting of many (¢, at, S¢+1)



The Main Concepts of DDPG

« Combine DQN (experience replay, target network) and
Actor-Critic

« Reformulate the objective as (according to DPG
theorem):

ACtor J(07) = E,,~z[Qgpe(ss, mor(s1))]

Critic J(8%9) = Esy ars01~2 [ (7(5t, ) +7Qpa- (St11, Tor (5111) ) —Qpe (51, ar))?]

-
6 , (9@ are the parameters for actor and critic

“# is experience replay consisting of
many (St7 at, St—l—l)

19



The Main Concepts of A3C

e« The formulation remains the same as actor-critic method
e Parameterize the actor and critic with DNN

« Concurrently collect data from multiple workers, update a
single policy.

« However, the recent works found that the synchronous version
of A3C is more efficient in GPU, which is called A2C

Training in parallel Training in parallel

Agent 1

Agent 2
Global Global
Network ' Network Coordinator
Parameters Parameters Agent 3

Agentn

A3C (Async) A2C (Sync)

20



Trust Region Policy Optimization

 Abbreviated as TRPO

* The objective and constraint function can be expressed as :

max [ [ﬂg(a‘S)Q (s,a)l
p S~Po,, 4~ q( a ‘ S) Oo1a ™" ’
subject to S [Dp%ld(ﬂ' (. |8) | | my(.]5)] <O

 TRPO guarantees monotonic improvement for policy updates



Maximum Entropy Reinforcement Learning

« Standard reinforcement learning

a* =argmax Eq .\l Z R(s,, a,)]
& 5

 Maximum entropy reinforcement learning

» An entropy term aZ (n( - | s,)) is introduced to encourage exploration

* a is a hyper-parameter for controlling how important the entropy term

IS

o ' (n(-|s,))is the entropy function

* The policy is trained to maximize (1) the expected return and (2)
entropy of the actions

r* = argmax
T

a)~T1 [

Z R(s,, a,)
! (1)

ZACIGREN)
(2)

22
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DRL is Extremely Data-Inefficient

Video Pinball

Breakout

Star Gunner
Robotank
Atlantis

Crazy Climber
Gopher
Demon Attack
Name This Game
Krull

Assault

Road Runner
Kangaroo
James Bond
Tennis

e For example, in the best case, DQN
consumes 200M frames to achieve
the human-level performance!

Space Invaders
Beam Rider
Tutankham

Kung-Fu Master

Freeway
Time Pilot
Enduro
Fishing Derby
Up and Down
Ice Hockey

« Moreover, DON mostly fails to
human even consuming > 200M
frames.

Asterix

Battle Zone

Wizard of Wor
Chopper Command
Centipede

Bank Heist

River Raid

Zaxxon

Amidar

Venture

Seaquest

Double Dunk

Bowling

Ms. Pac-Man
Asteroids

Frostbite

Gravitar

Private Eye
Montezuma's Revenge

2539%
1707% -
g :

som — =
449% e
cox I

At human-level or above

Below human-level

400 500



If you are a Supervise Learning Practitioner

e You might wonder that why supervised learning (SL)
can train DNN efficiently on several dataset (e.g.
MNIST, CIFAR-10, Imagenet), but DRL cannot do that.

It is because the “training
data”!

Bad training data contribute nothing on RL
Just like unclean training data undermines SL

25



Training Data for DRL

e Recap: the objective function of RL

Usually filled by the agent
itself. Filling by human
takes too much time.

J(.) = 1:3757@75731‘:_1”2‘[’}

26



Sub-Optimal Policy

7

Optimal Sub-optimal
policy e policy
0]

27



The Cause of Sub-Optimal Policy

If the agent don’t try
the unfamiliar action, it

will not find the higher
reward k 5

But if you keep trying all actions,
the accumulated rewards will
not be maximized




Exploitation and Exploration

J Exploitation
1

Balancing the exploitation and exploration is
necessary for RL, otherwise no useful training
data can be obtained

29



Sparse Rewards and Deceptive Rewards

Sparse reward Deceptive rewards

Difficult to find the reward Prone to learn a sub-optimal policy

30



Exploitation and Exploration

How do RL agents exploit? Optimization.

J(e) — Est,at,st+1~2 [(T(Stp at)_I_fY mgzx QH‘ (St—l—h a)_QQ(Sta at)>2]

J(Qﬂ-) — ]ESNdﬂ'Q ,arvTg [‘/QV (87 a’):

J(07) = Eqnoz |Qoa(st, mor(51))]

How do RL agents explore?

31



RL Exploration Strategies

B Exploration in deep reinforcement learning
To visit novel states as many as possible

To obtain better estimation of the value function

B Contemporary exploration strategies
e-greedy exploration and noise based exploration
Entropy-based exploration
Curiosity-based exploration
Diversity-driven exploration
Never give up

Go and explore

®  Challenges
Latency (the timesteps required for convergence)

Efficiency (the states visited by the agent should be as fewer as possible)

Easy implementation
32



e-Greedy, Entropy-based, Noise-based Exploration

¢ value is linearly The mean and
decayed variance are
- . fixed o
Stochasticity Stochasticity Stochasticity

Gaussian noise

Ay ~ Tor (a|st)

ar = mor (st) HN (p, 0)

{a’rgmaxa QGQ (Sta a)a p <€
a; —

U(A), otherwise J(67) = Bonr [Vir(s,0) + Hlmae (1)) (s,) +|0U (1. 0)
)
p~ U([0,1]) Euor [] = Evutror anmye | OU noise
e—greedy Add the entropy ' Perturb the deterministic

Sometimes take the best regularization term to action with random noise
action, sometimes randomly encourage the stochasticity in
take an action the policy

33



Noisy Network DQN / A2C

« Parameterizes the weights of neural networks as
probability distributions

y=wx +b
| ’ (Ew’ Eb)
W = N,w + O_w @ 6“’ /Z

-
b=,LLb+O'b@Eb /7

|

X

34



Parameter Noise DDPG

e They inject noise in the parameters at the beginning of
an episode and collect a whole rollout using this
perturbed parameters

Take an action at each

timestep
Action
Injected _
at the Compute action
Injected at the first with the perturbed
beginning of an timestep network, during that
episode and fixed Noise | @ episode
ise ) @ ‘ I
during that episode > ~ |

9 T |®

Input



Diversity-Driven Exploration

The modified loss function encourages the agent act
optimally while differentiating from prior policies.

Optimality
Lp :@,@ i ren oD (m, 7))
|

Diversity

“”in the loss function
indicates
“maximization”

36



Curiosity-Driven Exploration
Architecture

Ty t
W $
ICM ICM
Aba
P B N B(s+1) | imersel s Gig
- | Seaghi 1 N
Ny : Pl T s | [ O(8t) D(St41)
@\ E /@ @ Model f *
' 2
at a1 T L | ] 3
: 4 a
e t ) e t 7 | | |
I'e T A o T at St St+1

B Two separate modules: An RL agent and an intrinsic curiosity module (ICM)
ICM contains a forward dynamics model for estimating the novel of states
ICM also incorporates an inverse dynamics model for regulating the embeddings

The losses of the forward dynamics model serve as the intrinsic rewards for the

agent
37



Curiosity-Driven Exploration
Challenges

. :j
i B t
ICM ICM
¥ ‘\ q5(81;__._1) > mMV:é:? e &t
-St+1 t \ ‘

g w o |[|=] [
\at/ a1 T*— 2 - -

'r -+ 7“ Tf_H -+ r§+1 at St St+1

B Two separate modules: An RL agent and an intrinsic curiosity module (ICM)
ICM contains a forward dynamics model for estimating the novel of states
ICM also incorporates an inverse dynamics model for regulating the embeddings

The losses of the forward dynamics model serve as the intrinsic rewards for the
agent



Flow-Based Intrinsic Curiosity Module
Architecture

Forward flow (Fforwa rd)

X p
Warping (W)
St St1 Flow < kil
| predictor Rl
G
Warping (W)
X p
St+ 1’ St Backward flow (Fba(-kmrard)

B The properties of flow-baed intrinsic curiosity model (FICM)
FICM uses optical flow prediction errors as the novelty of states
Optical flows are estimated in dual directions: Forward and backward

The differences between the warped frames and the actual frames serve as the

Intrinsic reward
39



Flow-Based Intrinsic Curiosity Module
Architecture

Forward flow (Fforwa rd)

X p
Warping (W)
St St1 Flow < kil
| predictor Rl
G
Warping (W)
X p
St+ 1’ St Backward flow (Fba(-kmrard)

B The properties of flow-baed intrinsic curiosity model (FICM)
FICM uses optical flow prediction errors as the novelty of states
Optical flows are estimated in dual directions: Forward and backward

The differences between the warped frames and the actual frames serve as the

Intrinsic reward
40



Flow-Based Intrinsic Module
Implementations

/

' ' ’ s y . :
' ' g yy 5

' ' ’ 4 ‘ 11

W » v/ |
N N\ ".t 5

N By . & \.‘, P \.“4 : > > 4

conv3 deconvl t g " ™ Correlation

2 ' % ’ i N

M
‘
N 5 :
W Py
e ! N y
4 S /
N ¥
deconvl & t

(%} 2
deconv2 convs

cof:v2 dec::)znVZ co-nv4 o2
4 conv2
ccfr.lvl C(;l:lvl
(a) The flow predictor of FICM-S (b) The flow predictor of FICM-C

B Two different implementations of flow predictors are provided
- Different implementations validate the generalizability of FICM
FICM only requires two states as its input, instead of eight as in ICM
- The two implementations are based on FlowNet 2.0 modules

41 By Prof. Chun-Yi Lee at Dept. Computer Science, National Tsing Hua University



Random Network Distillation (RND)

Source of prediction errors

1.  Amount of training data — Prediction error is high where few similar examples were

seen by the predictor (epistemic uncertainty)

2. Stochasticity — Prediction error is high because the target function is stochastic

(aleatoric uncertainty). Stochastic transitions are a source of such error for forward

dynamics prediction

3. Model misspecification — Prediction error is high because necessary information is

missing, or the model class is too limited to fit the complexity of the target function

4. Learning dynamics — Prediction error is high because the optimization process fails to

find a predictor in the model class that best approximates the target function

42



Random Network Distillation (RND)

Factor (2) Stochasticity can result in the Noisy TV problem

RND aims to address the stochasticity issue, because in the original
ICM, the target network can be chosen to be deterministic.

43



Random Network Distillation (RND)

A different approach where the prediction problem is randomly

generated

 This involves two neura

* A fixed and random
prediction problem

networks:

y initialized target network which sets the

* A predictor network trained on the data collected by the agent.

The rarget network takes an observation transforms it to an embedding

f:0 — R-

The predictor network f 0 - Rk IS trained by gradient descent to minimize

the expected MSE ‘ ‘]?(X ] 9) —f(X) ‘ ‘2 with respect to its parameter 6]?

44



Random Network Distillation (RND)

Comparison of next-state prediction with RND

Next-State Prediction

ENVIRONMENT FEATURES

o = 041 ——— fi11

a;
\kVPOLICY

\pnenxcron =
0. -

o & Jitl

t PREDICTOR

PREDICTOR

PARAMETERS ¥ OPTIMIZER & fl SRS ft

POLICY & POLICY
PARAMETERS OPTIMIZER

2
[ fi—l—l"‘fi—l—l‘

014171 /

Oy at Tt

Random Network Distillation

ENVIRONMENT FEATURES

B i) SR it

.2
a; W= fi+1_fi+1‘

‘ POLICY PREDICTOR
0 .

7 -

L PREDICTOR PREDICTOR

PARAMETERS . OPTIMIZER o jﬁ "'j%

POLICY

= POLICY
PARAMETERS

OPTIMIZER

014171 /

O¢ dt. Tt
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Never Give Up: Learning Directed Exploration
Strategies

* First reinforcement learning agent able to solve hard exploration games by
learning a range of directed exploratory policies

* First algorithm to achieve non-zero rewards (with a mean score of 8,400) in
the game of Pitfall! without using demonstrations or hand-crafted features

* NGU o jointly learns a family of policies, with various degrees of
exploratory behavior

* The learning of the exploratory policies can be thought of as a set
of auxiliary tasks that can help build a shared architecture that
continues to develop even in the absence of extrinsic rewards

46



Never Give Up: Learning Directed Exploration
Strategies

Contributions

* The main contributions of NGU consists of the following items:

* An exploration bonus combining life-long and episodic novelty to learn exploratory
strategies that can maintain exploration throughout the agent’s training process (to

never give up)

* Developing intrinsic motivation rewards that encourage an agent to explore
|!!

and visit as many states as possible by providing more dense “interna
rewards for novelty-seeking behaviors

» Long-term life-long novelty rewards encourage visiting many states
throughout training, across many episodes

* Short-term episodic novelty rewards encourage visiting many states over a
short span of time (e.g., within a single episode of a game)

47



Never Give Up: Learning Directed Exploration
Strategies

The never-give-up intrinsic reward generation architecture

 The network is trained based on the
augmented reward

__________________ __ e l
life-long novelty | RAD randon nstwork } i rt- _— rt- _I_ ﬁrt-
p(a|.736:1?t+ 1 ) module —!-—> J — oy } mot:i[l,lll;tizm .
classiﬁcrh é ! g J 9_’ ’rt . . . i . .
1 e The intrinsic reward 1" / satisfies three
|

properties:

* It rapidly discourages revisiting
the same state within the same
episode

e It slowly discourages visits to
states visited many times
across episodes

48



Go-Explore: A New Approach for Hard-Exploration Problems

1. Phase 1
Go — Go to the selected state
Explore — Start explore from that state

2. Phase?2

Robustify — Use the trajectory collect from Phase 1.

Phase 1: explore until solved Phase 2: robustify
(if necessary)

Select state Go to state Explore Update Run imitation learning
from archive from state archive on best trajectory

49



Bootstrapped DQN

o Multiple bootstrapped heads are used for evaluating the value function

o Each bootstrapped head is trained independently

« MB-DQN extends the concept of Bootstrapped DQN for multiple backup

lengths

Mixture Bootstrapped DQN (MB-DQN)

Backup Length =2

( ) ‘ i Cj l t+1 C
S, A Sy Ay S
R12 =R +R,,
Backup Length =1
Rl
Shared O—e50)
Convolutional S R]A,: . S
Neural
®
Network o
Backup Length =m
o B
Si A, 8

Vanilla Bootstrapped DQN

Backup Length = 1

O—e50
Sl Al SH-I
er =R,
Backup Length = 1
Rl
Shared O—e—()
. Sl At SH-I
Convolutional o
Neural
®
Network .
Backup Length = 1
I R I
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Inverse Dynamics Model
(IDM) for Robotic Applications

Given a desired motion (i.e. a list of states, 7 = [§, §,, :*+, §7]), a robot can accomplish
this motion by inferring the actions (i.e. a list of torques, |a,, a,, -*+, a;]) by IDM
N

Robot execution

Human demonstration

Nair, Ashvin, et al. "Combining self-supervised learning and imitation for vision-based rope manipulation." 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017.

Agrawal, Pulkit, et al. "Learning to poke by poking: Experiential learning of intuitive physics." Advances in Neural Information Processing Systems. 2016.
Pathak, Deepak, et al. "Zero-Shot Visual Imitation." (2018) takes it as an image-based IDM



How to Obtain an IDM?

Data-driven modeling (e.q., neural network)

*Pathak, Deepak, et al. "Zero-Shot Visual Imitation." (2018) takes it as an image-based IDM



Training Data Collection

Human demonstration Random exploration (by robots) [1, 2]

NS =7\ | N

e

— — —

(from Google Al blog)

Pros: high-quality data
(including complex motions)

Pros: zero human effort

Cons: too much human effort Cons: low-quality data
(no complex motions)

[1] Nair, Ashvin, et al. "Combining self-supervised learning and imitation for vision-based rope manipulation." 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017.
[2] Agrawal, Pulkit, et al. "Learning to poke by poking: Experiential learning of intuitive physics." Advances in Neural Information Processing Systems. 2016.



Adversarial Active Exploration

We train a reinforcement learning (RL)* agent
to collect non-trivial training data (i.e. complex motions) for IDM

m th_|_1 [($t,$t+1|ht791)
T’ﬂ'ad@ at|513t It xtH) T/t
> (at, d

(2l B o e at, at) -
A\
> < B | |< Lf(at7&t|91)
@ Environment
(xtvaftfrhxt—}—l) ('th,CLt,‘J?Hl) Bl ok Agent
gen
. ) ) . . " Inverse
maximize Gy, minimize Ly(ag,d:|07) L bynamics mode

*Here we use Proximal Policy Optimization (PPO)



Adversarial Active Exploration

Tl <—@ I(z¢, wpq1|hye, O1)

Be encouraged to increase the prediction errors of IDM (rewards)
Nadv\Ut|Lt) B o

Try to decrease the its prediction errors P orL Agent
\J \J

I Inverse
Dynamics Model

mazimize Gy, . minimize Ly(ag,d:|07)

* The competitive relationship creates a curriculum to continually improve both sides
* As aresult, there are a lot of complex motions in the collected dataset

e Also, our method doesn’t rely on human supervision



Adversarial Active Exploration




TRAIN A ROBOT?



Traditional Way — Google’s Approach

)

Source: Peter/Paskos

st i 5N
Time Consumption Danger
3000 robot-hours of practice What if we train an autonomous car in real-world?
Monhey Potential Damage
We need to buy lots of robotic arms Bump into wall? Or fall into water!

Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, Google, Mar. 2016

59



Modular Architecture for Virtual-to-Real
Deep Reinforcement Learning

60



Advantage of Virtual Worlid

SAFETY

MONEY
Y:\"Al) (€



Gap Between Virtual and Real

Light Texture Shape Shadow
are totally different!

62



not familiar familiar

Segmentation
Model

“Virtual-to-real: Learning to control in visual semantic segmentation”, [JCAI 2018

63



Model Shader

!
I
I
f
I
i
prercept Segmentation Segmentation i
i
!
I
I
I
i
i

: A3C gbcontrol i
| Agent ¥
o yooo. . Control Policy!|

T

(a) Perception & control policy modules

! ¢percept

Y

Visual

(b) Visual-guidance module

“Virtual-to-real: Learning to control in visual semantic segmentation”, [JCAI 2018

_ Guidance
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Execution Training
sYyn
o
/Y S
percept|Segmentation Segmentation
¢ Model Shader

- - Perception

3 BB R Dy
M@IB)=Y

Image Semantic Segmentation
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Virtual-to-Real: Learning to Control in
Visual Semantic Segmentation

NVIDIA Jetson Developer Challenge Champion Grand Prize,
IJCAI 2018 Full Paper, and GTC 2018 Poster

Video Demonstration: https://youtu.be/ OqdnG4AlII8
Official Project Description: https://tinyurl.com/y2dI7skl
Paper Link: https://www.ijcai.org/Proceedings/2018/0682.pdf
&
Segmentation Segmentation
Model Shader
Target
= Chair
¢control . Visual |
e~~~ Y._.___ Control Policy': ! ...Guidance
70
(a) Perception & control policy modules (b) Visual-guidance module
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https://tinyurl.com/y2dl7skl
https://www.ijcai.org/Proceedings/2018/0682.pdf

Simulation Environments

< unity x ML-Agent
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Example Environments

By Prof. Chun-Yi Lee at Dept. Computer Science, National Tsing Hua University



A3C Agents in Virtual Environments

g

B A3C agent is able to move to its destination by itself

B The color palette has to be the same as those used for semantic segmentation
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Simulated environments

Visualization

Obstacle avoidance Target following

TRAINING IN SIMULATOR: TRAINING IN SIMULATOR:

OBSTACLE AVOIDANCE TASK TARGET FOLLOWING TASK

[1] Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World, Josh, et al.
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Training Environments

/1



EVALUATION ENVIRONMEN'TS

f
i |
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EVALUATION ENVIRONMEN'TS




Demonstration

- " — & \Mﬂ; ’J,H
Link: https://youtu.be/jz4lipO54Jg



Further Improvement of Virtual-to-Real
— Virtual Guide

B Denoted as a 2-D Ball

B Dynamically Adjust the Size and Position
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Localization

Position

L)

Orientation

Planner
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Virtual Guidance for Robot Navigation

NVIDIA Al the Edge Second Place Award, GTC 2020 Poster

Video Demonstration: https://voutu.be/1Pq9YidaeBl

Official Project Description: https://www.hackster.io/contests/NVIDIA
(*including the report, source codes, as well as all the technical details)

Action

PlannerTModule Control Policy Module

Perception Module

Image ‘

Localization Module

Autonomous Machines & Robotics

1st place was awarded a Trip to NVIDIA HQ, NVIDIA Titan RTX, NVIDIA Jetson Xavier, and $1K in Public Cloud Compute Credits, 2nd place was
awarded a NVIDIA Titan RTX, NVIDIA Laptop, NVIDIA Jetson Xavier and $500 in Public Cloud Compute Credits, and 3rd place was awarded a
NVIDIA Jetson AGX Xavier, NVIDIA Laptop, and $250 in Public Cloud Compute Credits

o O @ ° ® ¢

auto roboculture Do You Wanna Build a Snowman Andrei Ciobanu

rfificial Intelligence) based

nentation of Weed and Crop ==

-

Inthe realworld’a'plannerymodule places
AUTONOMOUS MACHINES & ROBOTICS: 1ST PLACE AUTONOMOUS MACHINES & ROBOTICS: ZND PLACE AUTONOMOUS MACHINES & ROBOTICS: 3RD PLACE gu (’ esto \ Uure therobo t to [(‘v | \ ow;t t‘ ena

Nindamani the Weed Removal Robot Sim-to-Real: Virtual Guidance for Robot Autonomous Tank
Navigation
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https://youtu.be/1Pq9YidaeBI
https://www.hackster.io/contests/NVIDIA

Demonstration

Link: https://youtu.be/G9tcofUwFPw




Agenda

Reinforcement Learning Backgrounds
DRL Techniques

Exploration

Robotic Applications

Summary

SN W - 4
MLSS 2021 TAIPEI
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Summary

In this talk, we discussed the fundamental concepts of reinforcement
learning, and introduced the concepts of deep reinforcement learning

We have explained the importance of exploration, and discussed several
representative exploration techniques.

We have discussed how reinforcement learning can be applied to robotic
applications, and demonstrated how a policy can be trained in virtual worlds
and transferred to the real world.
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Thank you for your attention!
Q&A

Fundamentals and Applications of

Deep Reinforcement Learning
8/4/2021

Prof. Chun-Yi Lee
cylee@cs.nthu.edu.tw

= .
g ot
§i Do

I ELSA LAB

http://elsalab.ai

Elsa Lab, Department of Computer Science
National Tsing Hua University
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