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• Research Domains 
• Intelligent Robotics


• Deep Reinforcement 
Learning


• Computer Vision for 
Robotics


• Virtual-to-Real Learning for 
Robotics


• Parallel Embedded Systems


• Parallel Computing



Elsa Lab
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ELSA Lab

Elsa Lab is supervised by Prof. Chun-Yi Lee, and is a professional research team dedicated to 
developing innovative deep reinforcement learning and computer vision technologies for 
intelligent robotics and autonomous agents.


Elsa Lab welcomes full-time research assistants, Ph.D. students, master students, and 
undergraduate students.

http://elsalab.ai
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Markov Decision Process (MDP)

The agent observes the state

At each timestep t …

5

Then take the action according to the policy 

Receive the reward and next state.
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Deep Reinforcement Learning

● The goal of the agent is to maximize the expected sum of rewards 



The Goal of MDP

Why discounting ?

In theory, it is for convergence proof.


In practice, it is to prevent unrealistic planning.


maximize the discounted accumulated reward at each 
timestep t.
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• Recap: the objective of MDP


• RL searches         according to the following criteria:


• Policy can be a deterministic function or a probability 
distribution


 

How does RL solve MDP
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Categories of RL

We only list a few branches of RL algorithms.
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• Parameterize the policy as a probability distribution with   : 


• Learn a policy by maximizing the objective function:


• Take an action by:

  

Policy gradient
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Q-learning

• Learn the state-action value function:


• Update the Q-function according to:


• Take an action by:
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Comparison - Q-learning v.s. Policy Gradient

• Q-learning is an off-policy algorithm as the training data 
can be generated by an arbitrary policy


• Policy gradient is an on-policy algorithm as the training 
data must be from the current policy

The stationary distribution of the current policy
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• Learn the policy and state/state-action value function concurrently


• Use policy gradient to learn a policy:


• Use Q-learning to learn a state/state-action value function:


• Take action by:

Actor-Critic
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Why DRL?
• The traditional RL employs simple models (e.g. single layer 

neural networks)


• They fail on the high-dimensional state space (the curse of 
dimensionality)

Quite a large 
size

15



The Basic Concept of DRL
• Embrace the expressive power of deep neural network 

(DNN)

CNN, LSTM, 
FC, …
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The Contemporary DRL Algorithms
• Deep Q-Network (DQN) 


• Deep Deterministic Policy Gradient (DDPG)


• Asynchronous Advantage Actor-Critic (A3C)


• Trust Region Policy Optimization (TRPO)


• Maximum Entropy RL

17



The Main Concepts of DQN

• Parameterize the Q-function with a DNN


• Enhance the data-efficiency by experience replay


• Enhance the performance by training with two Q-
functions

is experience replay (buffer) 
consisting of many 

is a Q-function of the target network

Make it more stable

18



The Main Concepts of DDPG
• Combine DQN (experience replay, target network) and 

Actor-Critic


• Reformulate the objective as (according to DPG 
theorem):

,            are the parameters for actor and critic

is experience replay consisting of 
many 

Actor

Critic

19



The Main Concepts of A3C
• The formulation remains the same as actor-critic method 

• Parameterize the actor and critic with DNN

• Concurrently collect data from multiple workers, update a 

single policy.

• However, the recent works found that the synchronous version 

of A3C is more efficient in GPU, which is called A2C


•  

20



Trust Region Policy Optimization
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• Abbreviated as TRPO 

• The objective and constraint function can be expressed as :   
  


           ,   

          
           subject to  


• TRPO guarantees monotonic improvement for policy updates

max
θ

𝔼s∼ρθold,a∼q[
πθ(a |s)
q(a |s)

Qθold
(s, a)]

𝔼s∼ρθold
[D̄ρθold

KL (πθold
( . |s) | |πθ( . |s))] ≤ δ



• Standard reinforcement learning

	 	 	 	 


• Maximum entropy reinforcement learning


• An entropy term  is introduced to encourage exploration


•  is a hyper-parameter for controlling how important the entropy term 
is


•  is the entropy function

• The policy is trained to maximize (1) the expected return and (2) 

entropy of the actions 

	 	 	 


π* = arg max
π

𝔼(st,at)∼π[∑
t

R(st, at)]

αℋ(π( ⋅ |st))
α

ℋ(π( ⋅ |st))

π* = arg max
π

𝔼(st,at)∼π[∑
t

R(st, at) + αℋ(π( ⋅ |st))]
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Maximum Entropy Reinforcement Learning

(1) (2)
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DRL is Extremely Data-Inefficient

• For example, in the best case, DQN 
consumes 200M frames to achieve 
the human-level performance!


• Moreover, DQN mostly fails to 
human even consuming > 200M 
frames.
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If you are a Supervise Learning Practitioner

• You might wonder that why supervised learning (SL) 
can train DNN efficiently on several dataset (e.g. 
MNIST, CIFAR-10, Imagenet), but DRL cannot do that.

It is because the ”training 
data”!

Bad training data contribute nothing on RL

Just like unclean training data undermines SL

25



Training Data for DRL

• Recap: the objective function of RL

Usually filled by the agent 
itself. Filling by human 
takes too much time.
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The Cause of Sub-Optimal Policy
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If the agent don’t try 
the unfamiliar action, it 
will not find the higher 

reward

But if you keep trying all actions, 
the accumulated rewards will 

not be maximized
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Exploitation and Exploration
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Exploration

Balancing the exploitation and exploration is 
necessary for RL, otherwise no useful training 

data can be obtained

Exploitation
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Exploitation and Exploration
How do RL agents exploit? Optimization.

How do RL agents explore?
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RL Exploration Strategies

32

Exploration in deep reinforcement learning 
• To visit novel states as many as possible

• To obtain better estimation of the value function  

Contemporary exploration strategies 
• ε-greedy exploration and noise based exploration 
• Entropy-based exploration  
• Curiosity-based exploration 
• Diversity-driven exploration 
• Never give up 
• Go and explore 

Challenges

• Latency (the timesteps required for convergence)

• Efficiency (the states visited by the agent should be as fewer as possible)

• Easy implementation



ε-Greedy, Entropy-based, Noise-based Exploration

DQN A3C DDPG

ε−greedy

Sometimes take the best 

action, sometimes randomly 
take an action

Add the entropy 
regularization term to 

encourage the stochasticity in 
the policy

Perturb the deterministic 
action with random noise

Gaussian noise

OU noise

Stochasticity Stochasticity Stochasticity

ε value is linearly 
decayed

The mean and 
variance are 

fixed
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Noisy Network DQN / A2C
• Parameterizes the weights of neural networks as 

probability distributions

34



Parameter Noise DDPG
• They inject noise in the parameters at the beginning of 

an episode and collect a whole rollout using this 
perturbed parameters

Injected at the 
beginning of an 

episode and fixed 
during that episode 

Compute action 
with the perturbed 

network, during that 
episode

Take an action at each 
timestep

Injected 
at the 
first 

timestep
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Diversity-Driven Exploration

The modified loss function encourages the agent act 
optimally while differentiating from prior policies.

Optimality

Diversity“-” in the loss function 
indicates 
“maximization”

36



Curiosity-Driven Exploration

Architecture

37

Two separate modules: An RL agent and an intrinsic curiosity module (ICM)  
• ICM contains a forward dynamics model for estimating the novel of states

• ICM also incorporates an inverse dynamics model for regulating the embeddings

• The losses of the forward dynamics model serve as the intrinsic rewards for the 

agent



Curiosity-Driven Exploration

Challenges

Two separate modules: An RL agent and an intrinsic curiosity module (ICM)  
• ICM contains a forward dynamics model for estimating the novel of states

• ICM also incorporates an inverse dynamics model for regulating the embeddings

• The losses of the forward dynamics model serve as the intrinsic rewards for the 

agent



Flow-Based Intrinsic Curiosity Module

Architecture

39

The properties of flow-baed intrinsic curiosity model (FICM) 
• FICM uses optical flow prediction errors as the novelty of states

• Optical flows are estimated in dual directions: Forward and backward

• The differences between the warped frames and the actual frames serve as the 

intrinsic reward



Flow-Based Intrinsic Curiosity Module

Architecture
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The properties of flow-baed intrinsic curiosity model (FICM) 
• FICM uses optical flow prediction errors as the novelty of states

• Optical flows are estimated in dual directions: Forward and backward

• The differences between the warped frames and the actual frames serve as the 

intrinsic reward



Flow-Based Intrinsic Module

Implementations

41 By Prof. Chun-Yi Lee at Dept. Computer Science, National Tsing Hua University

Two different implementations of flow predictors are provided   
• Different implementations validate the generalizability of FICM

• FICM only requires two states as its input, instead of eight as in ICM

• The two implementations are based on FlowNet 2.0 modules



Source of prediction errors

1. Amount of training data — Prediction error is high where few similar examples were 
seen by the predictor (epistemic uncertainty)


2. Stochasticity — Prediction error is high because the target function is stochastic 
(aleatoric uncertainty).  Stochastic transitions are a source of such error for forward 
dynamics prediction


3. Model misspecification — Prediction error is high because necessary information is 
missing, or the model class is too limited to fit the complexity of the target function


4. Learning dynamics — Prediction error is high because the optimization process fails to 
find a predictor in the model class that best approximates the target function

Random Network Distillation (RND)

42
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Factor (2) Stochasticity can result in the Noisy TV problem

RND aims to address the stochasticity issue, because in the original 
ICM, the target network can be chosen to be deterministic.

Random Network Distillation (RND)



A different approach where the prediction problem is randomly 
generated


• This involves two neural networks: 


• A fixed and randomly initialized target network which sets the 
prediction problem


• A predictor network trained on the data collected by the agent.

The target network takes an observation transforms it to an embedding  




The predictor network   is trained by gradient descent to minimize 

the expected MSE  with respect to its parameter  .

f : O → ℝk

̂f : O → ℝk

| | ̂f(x; θ) − f(x) | |2 θ ̂f

Random Network Distillation (RND)
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Comparison of next-state prediction with RND

Random Network Distillation (RND)
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Never Give Up: Learning Directed Exploration 
Strategies

• First reinforcement learning agent able to solve hard exploration games by 
learning a range of directed exploratory policies 

• First algorithm to achieve non-zero rewards (with a mean score of 8,400) in 
the game of Pitfall! without using demonstrations or hand-crafted features


• NGU o jointly learns a family of policies, with various degrees of 
exploratory behavior


• The learning of the exploratory policies can be thought of as a set 
of auxiliary tasks that can help build a shared architecture that 
continues to develop even in the absence of extrinsic rewards


46



47

Contributions
• The main contributions of NGU consists of the following items:


•  An exploration bonus combining life-long and episodic novelty to learn exploratory 
strategies that can maintain exploration throughout the agent’s training process (to 
never give up)


• Developing intrinsic motivation rewards that encourage an agent to explore 
and visit as many states as possible by providing more dense “internal” 
rewards for novelty-seeking behaviors


• Long-term life-long novelty rewards encourage visiting many states 
throughout training, across many episodes


• Short-term episodic novelty rewards encourage visiting many states over a 
short span of time (e.g., within a single episode of a game) 

Never Give Up: Learning Directed Exploration 
Strategies
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The never-give-up intrinsic reward generation architecture

• The network is trained based on the 
augmented reward 




• The intrinsic reward  satisfies three 
properties: 


• It rapidly discourages revisiting 
the same state within the same 
episode


• It slowly discourages visits to 
states visited many times 
across episodes


rt = re
t + βri

t

ri
t

Never Give Up: Learning Directed Exploration 
Strategies



1. Phase 1 
    Go — Go to the selected state 
    Explore — Start explore from that state


2. Phase 2 

      Robustify — Use the trajectory collect from Phase 1.

49

Go-Explore: A New Approach for Hard-Exploration Problems

49



Bootstrapped DQN
• Multiple bootstrapped heads are used for evaluating the value function


• Each bootstrapped head is trained independently


• MB-DQN extends the concept of Bootstrapped DQN for multiple backup 
lengths

50
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Inverse Dynamics Model 
(IDM) for Robotic Applications

Given a desired motion (i.e. a list of states, ), a robot can accomplish 
this motion by inferring the actions (i.e. a list of torques, ) by IDM

τ = [ ̂s1, ̂s2, ⋯, ̂sT]
[a1, a2, ⋯, aT]

s1

̂s2

a1

IDM

̂s1

s2

̂s3

s3

IDM

a2

… …

s1

̂s2

a1IDM

at = I(st, ̂st+1)

In-environment

In-demo

Nair, Ashvin, et al. "Combining self-supervised learning and imitation for vision-based rope manipulation." 2017 IEEE International Conference on Robotics and Automation 
(ICRA). IEEE, 2017.

Agrawal, Pulkit, et al. "Learning to poke by poking: Experiential learning of intuitive physics." Advances in Neural Information Processing Systems. 2016.

Pathak, Deepak, et al. "Zero-Shot Visual Imitation." (2018) takes it as an image-based IDM



How to Obtain an IDM?
Data-driven modeling (e.g., neural network)

s1

̂s2

a1

̂s1

s2

̂s3

s3

a2

… …

s1

̂s2

a1

at = I(st, ̂st+1)

In this work, we take IDM as a Long Short Term Memory (LSTM)*

In-environment

In-demo

IDM IDM
IDM

*Pathak, Deepak, et al. "Zero-Shot Visual Imitation." (2018) takes it as an image-based IDM



Training Data Collection
Human demonstration Random exploration (by robots) [1, 2]

(from Google AI blog)

Pros: high-quality data 
(including complex motions)

Cons: too much human effort

Pros: zero human effort

Cons: low-quality data  
(no complex motions)

[1] Nair, Ashvin, et al. "Combining self-supervised learning and imitation for vision-based rope manipulation." 2017 IEEE International Conference on Robotics and Automation 
(ICRA). IEEE, 2017.

[2] Agrawal, Pulkit, et al. "Learning to poke by poking: Experiential learning of intuitive physics." Advances in Neural Information Processing Systems. 2016.



Adversarial Active Exploration
We train a reinforcement learning (RL)* agent 


to collect non-trivial training data (i.e. complex motions) for IDM

*Here we use Proximal Policy Optimization (PPO)



Adversarial Active Exploration

Be encouraged to increase the prediction errors of IDM (rewards)

Try to decrease the its prediction errors

• The competitive relationship creates a curriculum to continually improve both sides


• As a result, there are a lot of complex motions in the collected dataset


• Also, our method doesn’t rely on human supervision



Adversarial Active Exploration



TRAIN A ROBOT?
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Traditional Way — Google’s Approach

Time Consumption

3000 robot-hours of practice

Money

We need to buy lots of robotic arms 

Danger

What if we train an autonomous car in real-world?

Potential Damage

Bump into wall? Or fall into water!

Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection,  Google,  Mar. 2016
59



Modular Architecture for Virtual-to-Real 
Deep Reinforcement Learning
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Advantage of Virtual World

SAFETY

SPEED

MONEY 
SAVING
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Light Texture ShadowShape

Gap Between Virtual and Real

are totally different!
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Segmentation 
Model

familiarnot familiar

63“Virtual-to-real: Learning to control in visual semantic segmentation”, IJCAI 2018



64“Virtual-to-real: Learning to control in visual semantic segmentation”, IJCAI 2018



PERCEPTION

MODEL

Image Semantic Segmentation
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Virtual-to-Real: Learning to Control in 
Visual Semantic Segmentation
NVIDIA Jetson Developer Challenge Champion Grand Prize,  

IJCAI 2018 Full Paper, and GTC 2018 Poster
Video Demonstration: 		 https://youtu.be/_OqdnG4AII8 
Official Project Description: 	 https://tinyurl.com/y2dl7skl 
Paper Link: 				 https://www.ijcai.org/Proceedings/2018/0682.pdf
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https://youtu.be/_OqdnG4AII8
https://tinyurl.com/y2dl7skl
https://www.ijcai.org/Proceedings/2018/0682.pdf


ML-Agent
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Simulation Environments



Example Environments

68 By Prof. Chun-Yi Lee at Dept. Computer Science, National Tsing Hua University



A3C Agents in Virtual Environments 

69 By Prof. Chun-Yi Lee at Dept. Computer Science, National Tsing Hua University

A3C agent is able to move to its destination by itself 
The color palette has to be the same as those used for semantic segmentation



Simulated environments

Visualization

[1] Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World, Josh, et al.

Obstacle avoidance Target following
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Training Environments



EVALUATION ENVIRONMENTS
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EVALUATION ENVIRONMENTS
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Demonstration

Link: https://youtu.be/jz4IipO54Jg



Further Improvement of Virtual-to-Real 


— Virtual Guide

Denoted as a 2-D Ball 

Dynamically Adjust the Size and Position

75
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Planner PathLocalization

Position

Orientation



Virtual Guidance for Robot Navigation
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NVIDIA AI the Edge Second Place Award, GTC 2020 Poster
Video Demonstration: 		 https://youtu.be/1Pq9YidaeBI 
Official Project Description: 	 https://www.hackster.io/contests/NVIDIA 
(*including the report, source codes, as well as all the technical details)

https://youtu.be/1Pq9YidaeBI
https://www.hackster.io/contests/NVIDIA


Demonstration

Link: https://youtu.be/G9tcofUwFPw
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By Prof. Chun-Yi Lee at Dept. Computer Science, National Tsing Hua University

Summary
In this talk, we discussed the fundamental concepts of reinforcement 
learning, and introduced the concepts of deep reinforcement learning 
We have explained the importance of exploration, and discussed several 
representative exploration techniques. 
We have discussed how reinforcement learning can be applied to robotic 
applications, and demonstrated how a policy can be trained in virtual worlds 
and transferred to the real world.



Thank you for your attention!

Q & A
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