
Song Han

Assistant Professor 
Massachusetts Institute of Technology

 

Putting AI on a Diet:

 
TinyML and Efficient Deep Learning

https://songhan.mit.edu

https://songhan.mit.edu

Challenges for Deep Learning:

AlphaGo: 1920 CPUs and 280 GPUs, 
 $3000 electric bill per game

computation-hungry, data-hungry

ImageNet / Moments in Time 
>1 million images / videos

Lots of efforts to collect/label

Cloud AI: increases TCO & carbon  
Mobile AI: drains battery  
Tiny AI: can’t fit memory

Many engineers

A lot of data

A lot of computation

A lot of carbon

TinyML and Efficient Deep Learning

fewer engineersless computation

less carbon

less data

TinyML and Efficient Deep Learning

TinyML

Three aspects

Deep Compression
Make AI run Fast and Efficiently

with Limited Hardware Resource

Han, Mao, Dally, Deep Compression, ICLR’16, best paper award

Deep Compression Make AI run Fast and Efficiently

with Limited Hardware Resource

Original ResNet-50

with Deep Compression

100MB

6MB 17x compression

Han, Mao, Dally, Deep Compression, ICLR’16, best paper award

Deep
Compression

pruning
neurons

pruning
synapses

after pruningbefore pruning

pruning
neurons

pruning
synapses

after pruningbefore pruning

Pruning

Pruning & Sparsity

the curve credits to NVIDIA

Han et al., NIPS’15

Increased attention  
since 2015

EIE, Han et al, ISCA’16

ESE, Han et al, FPGA’17

SpArch, Zhang et al, HPCA’20

SpAtten, Wang et al, HPCA’21

SpArch:

Pruning & Sparsity
applied by industry:

2:4 sparsity in A100 GPU

2X peak performance,

1.5X measured BERT speedup

Reduce model complexity by 5x to
50x with minimal accuracy impact.
Deep Compression takes the
performance of your AI inference to
the next level.

https://arxiv.org/pdf/1602.01528.pdf
https://arxiv.org/pdf/1612.00694.pdf
https://hanlab.mit.edu/projects/sparch/

TinyML and Efficient Deep Learning

• AutoML and NAS
- Once-for-all Network [ICLR’19] 

• Less Computation
- Inference: MCUNet for IoT Devices [NeurIPS’20, spotlight]

- Training: Tiny On-Device Transfer Learning (TinyTL) [NeurIPS’20] 

• Less Training Data
- Differentiable Augmentation for Data-Efficient GAN Training [NeurIPS’20]

TinyML and Efficient Deep Learning

• AutoML and NAS
- Once-for-all Network [ICLR’19] 

• Less Computation
- Inference: MCUNet for IoT Devices [NeurIPS’20, spotlight]

- Training: Tiny On-Device Transfer Learning (TinyTL) [NeurIPS’20] 

• Less Training Data
- Differentiable Augmentation for Data-Efficient GAN Training [NeurIPS’20]

LibraryLibrary

Manual Design:  
black magic, nutoriously hard to tune

Automatic Design:

Synthesize NNs to fit latency/accuracy/memory constraints

Hardware-aware Neural Architecture Search

#Layers

#Channel Width

Kernel Size

Resolution

Branches

Latency/Energy feedback

EDA tool : Circuit = NAS : Neural net

AMC: AutoML for Model Compression
[ECCV 2018]

HAQ: Hardware-aware  
Automated Quantization

[CVPR 2019], oral 
integrated by Intel OpenVINO

AutoML and Neural Architecture Search

1st Place of Visual Wakeup Words (VWW) Challenge, host by Google @CVPR2019

push-button solultion  
for efficient NN design

Proxyless Neural Architecture Search
[ICLR 2019]

integrated by Facebook PyTorch and  
Amazon AutoGluon

Combine them together: APQ: Joint Search for Network Architecture, Pruning and
Quantization Policy [CVPR’20]

https://arxiv.org/pdf/1802.03494.pdf
https://arxiv.org/pdf/1811.08886
https://arxiv.org/abs/1812.00332

13

How to design efficient NN models for diverse
hardware platforms?

Cortex M4

(256kB/1MB)

Lots of hand tuning for different devices!

layers, # channels, resolution, kernel size…

GPU, 16GB Mobile phone, 4GB

14

Design Cost (GPU hours)

200

The design cost is calculated under the assumption of using MobileNet-v2.

For devices:

 For search episodes: // meta controller

 For training iterations:

 forward-backward();

 If good_model: break;

 For post-search training iterations:

 forward-backward();

2019

Hardware-aware Neural Architecture Search

15
The design cost is calculated under the assumption of using MnasNet.

[1] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." CVPR. 2019.

Design Cost (GPU hours)

40K

For devices:

 For search episodes: // meta controller

 For training iterations:

 forward-backward();

 If good_model: break;

 For post-search training iterations:

 forward-backward();

Expensive

Expensive

2019

Hardware-aware Neural Architecture Search

For devices:

 For search episodes: // meta controller

 For training iterations:

 forward-backward();

 If good_model: break;

 For post-search training iterations:

 forward-backward();

16

Diverse Hardware Platforms

The design cost is calculated under the assumption of using MnasNet.

[1] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." CVPR. 2019.

160K

40K

Design Cost (GPU hours)

2019 2017 2014 2010

Expensive!

Expensive!

Hardware-aware Neural Architecture Search

17

Diverse Hardware Platforms

Cloud AI (FLOPS)1012 Mobile AI (FLOPS)109 Tiny AI (FLOPS)106

…

160K

40K

1600K

Design Cost (GPU hours)

The design cost is calculated under the assumption of using MnasNet.

[1] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." CVPR. 2019.

For many devices:

 For search episodes: // meta controller

 For training iterations:

 forward-backward();

 If good_model: break;

 For post-search training iterations:

 forward-backward();

Expensive!!

Expensive!!

Hardware-aware Neural Architecture Search

18

Diverse Hardware Platforms

Cloud AI (FLOPS)1012 Mobile AI (FLOPS)109 Tiny AI (FLOPS)106

…

160K

40K

1600K

Design Cost (GPU hours)

 11.4k lbs CO2 emission→

 45.4k lbs CO2 emission→

 454.4k lbs CO2 emission→

1 GPU hour translates to 0.284 lbs CO2 emission according to

Strubell, Emma, et al. "Energy and policy considerations for deep learning in NLP." ACL. 2019.

For many devices:

 For search episodes: // meta controller

 For training iterations:

 forward-backward();

 If good_model: break;

 For post-search training iterations:

 forward-backward();

Expensive!!

Expensive!!

Hardware-aware Neural Architecture Search

Evolved Transformer ICML’19, ACL’19

We need Green AI 

Today’s NAS is too expensive

iPhone XSiPhone 12

20

Once-for-All Network
Train once, get many

Reduce the design cost

Fit diverse hardware constraints

Users may have the high-end phones
and also low-end phones;

We want to be inclusive for users who
have low-end phones.

But, it’s expensive to design NN of
difference sizes

iPhone 11
A14 Bionic, 2020 A13 Bionic, 2019 A12 Bionic, 2018

AirPods

21

Once-for-All Network

iPhoneiPad

Train once, get many

Reduce the design cost

Fit diverse hardware constraints

22

Once-for-All Network

full battery /

latest NPU

Low battery /

older NPU

battery-saving  
mode

Train once, get many

Reduce the design cost

Fit diverse hardware constraints

23

Conventional NAS

For devices:

 For search episodes: // meta controller

 For training iterations:

 forward-backward();

 If good_model: break;

Expensive

Once-for-All:

For OFA training iterations:

 forward-backward();

For devices:

 For search episodes:

 sample from OFA;

 If good_model: break;

=>

Expensive
Training

Search
Decouple

Light-Weight

Once-for-All Network
Weight-sharing,

Decouple Training and Search

Once for All Network: Train 1019 networks at the same time

Once-for-All Network

Get many (1019) child nets  
for free

Human brain activates
sparsely

OFA network containts many
child networks that are
sparsely activated

Child networks share the
weights with the Once-for-All
network, trained joinly

25

Make the OFA network elastic:

How to prevent large & small sub networks from
interfering with each other?

Once-for-All Network

26

Once-for-All Network

progressive shrinking:

kernel size

27

Once-for-All Network

progressive shrinking:

kernel size

progressive shrinking:

layers

28

Once-for-All Network

progressive shrinking:

kernel size

progressive shrinking:

layers

progressive shrinking:

channels

29upto +2.8% improvement of top-1 accuracy

Once-for-All Network
Subnets sampled from OFA SuperNet outperforms training from scratch!

Once-for-All, ICLR’20 30

Performances of Sub-networks on ImageNet
Im

ag
eN

et
 T

op
-1

 A
cc

 (%
)

67

70

73

75

78
w/o PS w/ PS

D=2

W=3

K=3

D=2

W=3

K=7

D=2

W=6

K=3

D=2

W=6

K=7

D=4

W=3

K=3

D=4

W=3

K=7

D=4

W=6

K=3

D=4

W=6

K=7

2.5%
2.8%

3.5%
3.4% 3.3%

3.4%
3.7%

3.5%

Sub-networks under various architecture configurations

D: depth, W: width, K: kernel size

• Progressive shrinking consistently improves accuracy of sub-networks on ImageNet.

https://arxiv.org/pdf/1908.09791.pdf

Evolutionary Architecture Search

31

OFA Network

Acc Dataset

[Architecture, Accuracy]

Latency Dataset

[Architecture, Latency]

Accuracy Predictor

Latency Predictor

Evolutionary

Architecture Search Specialized

Sub-Network

mutation, crossover,  
select best fit

Once-for-All Network

Latency measurement

32

t=10ms

target = 12ms

target = 8ms
Re-sample

Keep Arch.

Sample

Latency/accuracy PredictorSub NetworkOFA Network

+
CrossoverMutate

Evolutionary Architecture Search
Once-for-All Network

33

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

76

77

78

79

80

81

0 50 100 150 200 250 300 350 400

OFA EfficientNet

76.3

78.8

79.8
79.8

78.7

Google Pixel1 CPU Latency (ms)

80.1 2.6x faster

3.8% higher

accuracy

Once-for-All Network
Train only once, handle diverse hardware constraints

Once-for-All, ICLR’20

https://arxiv.org/pdf/1908.09791.pdf

34

Once-for-All Network
Train only once, generate the entire Pareto curve

Once-for-All, ICLR’20

https://arxiv.org/pdf/1908.09791.pdf

Automatically Synthesize Neural Nets 

35
https://hanlab.mit.edu/projects/ofa/demo/

given different latency/accuracy constraints

https://hanlab.mit.edu/projects/ofa/demo/

36

One model per point.

Users can choose from a large freedom.

Platform: Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz (28 cores), HT ON, turbo ON,

Total Memory: 192GB (12 slots / 16 GB / 2933 MHz)
Framework: PyTorch v.1.5.0 with Intel®MKL-DNN 0.14 enabled, data type FLOAT 32
System: BIOS SE5C620.86B.02.01.0008.031920191559 / Ubuntu 18.04.4 LTS, Kernel 4.15.0-88-generic

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

65

67

69

71

73

75

77

CPU Latency (ms)
15 20 25 30 35 40 45 50 55 60

MNASNet MobileNetV2 SlimmableNets OFA

Faster

Better

Automatically Synthesize Neural Nets 
given different latency/accuracy constraints

37

Samsung S7 Edge Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

25 40 55 70 85 100

OFA MobileNetV3 MobileNetV2

75.2

73.3

70.4

67.4

70.5

73.1

74.7

76.3

Google Pixel2 Latency (ms)

67

69

71

73

75

77

23 28 33 38 43 48 53 58 63 68

75.2

73.3

70.4

67.4

75.8
74.7

73.4

71.5

LG G8 Latency (ms)

67

69

71

73

75

77

7 10 13 16 19 22 25

75.2

73.3

70.4

67.4

76.4

74.7

73.0

71.1

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

58

62

66

69

73

77

10 14 18 22 26 30
NVIDIA 1080Ti Latency (ms)

Batch Size = 64

60.3

65.4

69.8
72.0

72.6
73.8

75.3 76.4

58

62

66

69

73

77

9 11 13 15 17 19
Intel Xeon CPU Latency (ms)

Batch Size = 1

60.3

65.4

69.8
72.0

71.1

74.6
75.7

72.0

58

62

66

69

73

77

3.0 4.0 5.0 6.0 7.0 8.0
Xilinx ZU3EG FPGA Latency (ms)

Batch Size = 1 (Quantized)

59.1

63.3

69.0
71.5

67.0
69.6

72.8
73.7

Once-for-All Network

Once-for-All, ICLR’20

https://arxiv.org/pdf/1908.09791.pdf

0 1 2 3 4 5 6 7 8 9
MACs (Billion)

69

71

73

75

77

79

81
Im

ag
eN

et
 T

op
-1

 a
cc

ur
ac

y
(%

)

2M 4M 8M

Handcrafted

16M

AutoML

32M 64M

→→

The higher the better

The lower the better

Once-for-All (ours)

EfficientNet

ProxylessNAS
MBNetV3

AmoebaNet

MBNetV2
PNASNet
ShuffleNet
DARTS

IGCV3-D

MobileNetV1 (MBNetV1)

NASNet-A

InceptionV2

DenseNet-121

DenseNet-169

ResNet-50

ResNetXt-50

InceptionV3

DenseNet-264

DPN-92

ResNet-101

Xception

ResNetXt-101

14x less computation

595M MACs

80.0% Top-1

Model Size

Consistently outperforms human baselines, world-record on MLPerf  
Turn-key solution for co-design

Once-for-All Network

• OFA sets a world-record in the open division of MLPerf Inference Benchmark:
1.078M images per second on eight A100 GPUs

https://mlcommons.org/en/inference-datacenter-10/

Award Winning Technology

5th Low-Power Computer Vision
Challenge

CPU detection

FPGA detection CPU classification CPU detection DSP Recognition

Visual Wake Words
Challenge @CVPR 2019

MicroNet Challenge  
@NeurIPS 2019

AI Driving Olympics
@ICRA 2021

4th Low-Power Computer Vision
Challenge

3th Low-Power Computer Vision
Challenge

Visual Wake Words
on TF-lite

NLP track

Language Model

3D Semantic
Segmentation

https://www.nuscenes.org/lidar-segmentation?externalData=all&mapData=all&modalities=Any

Industry Adoption

TSM: Temporal Shift Module for Efficient Video Understanding is
integrated by NVIDIA for video classification.

HAQ: Hardware-Aware Automated Quantization with Mixed Precision is integrated by
Intel OpenVINO Toolkit. Efficiently search over the bitwidth space for mixed-
precision machine learning inference (2, 4, 8 bits)

Once-for-All (OFA) Network adopbed by Alibaba received a world-record in the
open division of MLPerf Inference Benchmark, achieving 1.078M images per
second on eight A100 GPUs

Proxyless Neural Architecture Search, an efficient neural architecture search
algorithm with light-weight model for mobile AI is integrated by AWS AutoGluon
and Facebook PyTorch.

Once-for-All (OFA) Network adopbed by Maxim Integrated provides 6% accuracy
increase in image recognition and 2% accuracy increase in speech command
recognition, with >100x energy efficiency compared to Cortex-M4.

https://arxiv.org/pdf/1811.08886.pdf
https://github.com/openvinotoolkit/nncf/blob/develop/docs/compression_algorithms/Quantization.md
http://ofa.mit.edu/
https://mlcommons.org/en/inference-datacenter-10/
http://pr
https://autogluon.mxnet.io/tutorials/nas/enas_proxylessnas.html
https://pytorch.org/hub/pytorch_vision_proxylessnas/
http://ofa.mit.edu/

41

AnyCost GAN, CVPR’21

Demo:

Anycost GAN

42

Anycost GAN

Smaller, faster child networks are

nested in larger ones

Demo:

GAN Compression

[HPCA’21] Hanrui Wang, Zhekai Zhang, Song Han; “SpAtten: Efficient Sparse Attention Architecture with Cascade Token and Head Pruning”

Cascade token pruning

Efficient NLP HAT, ACL’20

SpAtten, HPCA’21

Once-for-all Transformer
Spotlight on MIT homepage

https://hat.mit.edu
http://spatten.mit.edu

HAT: Hardware-Aware Transformers, ACL 2020 45

• HAT is orthogonal to general model compression techniques

B
LE

U
 o

n
W

M
T’

14
 E

n-
Fr

36

39

42

45

M
od

el
 S

iz
e

(M
B

)

0

240

480

720

Transformer HAT (Ours) HAT (8 bits) HAT (4 bits)

41.1

41.941.8
41.2

28
57

227

705

41.1

41.941.8
41.2

3.1×

4.0×

2.0×

25×

On WMT’14 En-Fr Task

HAT, ACL’20

SpAtten, HPCA’21

Efficient NLP

http://spatten.mit.edu
http://spatten.mit.edu

Efficient NLP

HAT, ACL’20

8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

ACL 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Table 1

Human Life 11023 5000

American Life 36156

US car including
fuel

126000

Evolved
Transformer

626155

HAT (Ours) 6000

626,155

126,000

36,156

11,023Human Life
(Avg. 1 year)

American Life
(Avg. 1 year)
US Car w/ Fuel
(Avg. 1 lifetime)

Evolved
Transformer

HAT (Ours) 52 12041×

0 175K 350K 525K 700K
CO2 Emission (lbs)

Figure 9: The design cost measured in pounds of
CO2 emission. Our framework for searching HAT re-
duces the search cost by four orders of magnitude than
Evolved Transformer (So et al., 2019).

top ones; on the contrary, HAT trains all models
together inside SuperTransformer and sorts their
performance proxy to pick top ones. The superior
performance of HAT proves that the performance
proxy is accurate enough to find good models.

Quantization-Friendly. HAT is orthogonal to
other model compression techniques such as quan-
tization. We apply K-means quantization to HAT
and further reduce the model size. We initialize
centroids uniformly in the range of [min, max] of
each weight matrix and run at most 300 iterations
for each of them. Even without any fine-tuning, 4-
bit quantization can reduce the model size by 25⇥
with negligible BLEU loss compared to the Trans-
former baseline (Table 5). Interestingly, the 8-bit
model even increases the BLEU by 0.1 than the 32-
bit floating-point version, indicating the robustness
of our searched HAT.

5 Related Work
Transformer. Transformer (Vaswani et al., 2017)
has prevailed in sequence modeling. By stacking
identical blocks, the model obtains a large capac-
ity but incurs high latency. Recently, a research
trend is to modify the Transformer to improve the
performance (Chen et al., 2018; Wu et al., 2019b;
Sukhbaatar et al., 2019; Wang et al., 2019). Among
them, Wu et al. (2019b) introduced a convolution-
based module to replace the attention; Wang et al.
(2019) proposed a method for training deep Trans-
formers by propagating multiple layers together in
the encoder. In those architectures, all layers are
still identical without fully leveraging the design
space. Another trend is to apply non- or partially-
autoregressive models to cut down the iteration
number for decoding (Gu et al., 2019; Akoury et al.,
2019; Wei et al., 2019; Gu et al., 2018). Although
reducing latency, they all suffer from low perfor-
mance. Anonymous (2020) investigated mobile

BLEU Model Size Reduction

Transformer Float32 41.2 705MB –
HAT Float32 41.8 227MB 3⇥
HAT 8 bits 41.9 57MB 12⇥
HAT 4 bits 41.1 28MB 25⇥

Table 5: K-means quantization of HAT models on
WMT’14 En-Fr. 4-bit quantization reduces model size
by 25⇥ with only 0.1 BLEU loss than transformer base-
line. 8-bit quantization even increases BLEU by 0.1
than its float version.

settings for NLP tasks and proposed a multi-branch
mobile Transformer. However, it relied on FLOPs
for efficient model design, which is an inaccurate
proxy for hardware latency (Figure 2).

Neural Architecture Search. In the computer
vision community, to obtain efficient models, there
has been an increasing interest in automating
model design with Neural Architecture Search
(NAS) (Zoph and Le, 2017; Zoph et al., 2018;
Pham et al., 2018). Some of them also involved
hardware constraints into optimization such as
MNasNet (Tan et al., 2019), ProxylessNAS (Cai
et al., 2019b) and FBNet (Wu et al., 2019a). To
reduce the high design cost of NAS, supernet based
methods (Guo et al., 2019; Bender et al., 2018) ap-
ply a proxy for sub-network performance and adopt
search algorithms to find good sub-networks. For
NLP tasks, the benefits from the architecture search
have not been fully investigated. Recently, So et al.
(2019) proposed Evolved Transformer to search
for architectures under model size constraints and
surpassed the original Transformer baselines. How-
ever, it suffered from extremely high search costs
(250 GPU years), making it infeasible to special-
ize models for various hardware and tasks. Also,
hardware latency feedback was not taken into con-
siderations for better case-by-case specialization.

6 Conclusion

We propose Hardware-Aware Transformers (HAT)
framework to solve the challenge of efficient Trans-
former model deployment on the various kinds of
hardware platforms. We conduct hardware-aware
neural architecture search in an ample design space
with an efficient weight-shared SuperTransformer,
which consumes four orders of magnitude less cost
than the prior Evolved Transformer and discovers
high-performance low-latency models. We hope
HAT can open up an avenue towards efficient Trans-
formers deployment for real-world applications.

��������� $UWERDUG��

ÀOH����8VHUV�KDQUXLZDQJ�'RZQORDGV�QRXQBVSHDNB��������VYJ ���

*YLH[LK�I`�.YLNVY�*YLZUHY
MYVT�[OL�5V\U�7YVQLJ[

���������$UWERDUG��

ÀOH����8VHUV�KDQUXLZDQJ�'RZQORDGV�QRXQBVSHDNB��������VYJ���

*YLH[LK�I`�.YLNVY�*YLZUHY
MYVT�[OL�5V\U�7YVQLJ[

��������� QRXQBVPDUW�SKRQHB�������VYJ

ÀOH����8VHUV�KDQUXLZDQJ�'RZQORDGV�QRXQBVPDUW�SKRQHB�������VYJ ���

*YLH[LK�I`�3PHT�4P[JOLSS
MYVT�[OL�5V\U�7YVQLJ[

“Nice to meet you” “Encantada de conocerte”
“만나서 반갑습니다”
“உṛيᥠ֦ک”
“Freut mich, dich kennenzulernen”

Efficient NLP on mobile devices
enable real time conversation
between speakers using different
languages

��������� QRXQBVSHHG�PHWHUB��������VYJ

ÀOH����8VHUV�KDQUXLZDQJ�'RZQORDGV�QRXQBVSHHG�PHWHUB��������VYJ ���

*YLH[LK�I`�RPKKV
MYVT�[OL�5V\U�7YVQLJ[

��������� QRXQB%DWWHU\�&KDUJLQJB��������VYJ

ÀOH����8VHUV�KDQUXLZDQJ�'RZQORDGV�QRXQB%DWWHU\�&KDUJLQJB��������VYJ ���

*YLH[LK�I`�(KYPLU�*VX\L[
MYVT�[OL�5V\U�7YVQLJ[

HAT, ACL’20

SpAtten, HPCA’21

http://spatten.mit.edu
http://spatten.mit.edu

Cascade token pruning

OFA for NLP HAT, ACL’20

SpAtten, HPCA’21

Once-for-all Transformer
Spotlight on MIT homepage

https://hat.mit.edu
http://spatten.mit.edu

48

NAAS: Neural Accelerator Architecture Search

Neural Accelerator Architecture Search, DAC’21

Mapping
Population

Accelerator
Population

Sample Best
Architecture

Select
Best Fits:
Low EDP

Best
Mapping

Update
Sample Distribution Select

Best Fits:
Low EDP

Update
Sample Distribution

E
volution

E
volution

For oh:
 For ic:
 For kw:
 For ow:

HW
Desc.

Hardware
Evaluation

Environment

For kw:
 For ic:
 For kh:
 For ow:

For oc:
 For ic:
 For oh:
 For ow:

Sample

Mapping
Search Space

Accelerator
Architecture

Search Space

HW Perf.
Estimation

(MAESTRO)

EDP

NAAS

Decode

Decode

Neural
Architecture

Search Space Neural Network
Population

Best
Network

Mutation &
Crossover Select

Best Fits:
Low EDP

Evolution

Benchmarks

EDP with Best Mapping
of Best Network

EDP with Best Mapping

Sample

Integrated with NAS

Fig. 1: Neural Accelerator Architecture Search.

over the large design space, NAAS leverages the biologically-
inspired evolution-based algorithm rather than meta-controller-
based algorithm to improve the sample efficiency. It keeps
improving the quality of the candidate population by ruling
out the inferior and generating from the fittest. Thanks to the
low search cost, NAAS can be easily integrated with hardware-
aware NAS algorithm by adding another optimization level
(Figure 1), achieving the joint search.

Extensive experiments verify the effectiveness of our frame-
work. Under the same #PE and on-chip memory constraints,
the NAAS is able to deliver 2.6⇥, 4.4⇥ speedup and 2.1⇥,
1.4⇥ energy savings on average compared to Eyeriss [14],
NVDLA [15] design respectively. Integrated with Once-For-All
NAS algorithm [4], NAAS further improves the top-1 accuracy
on ImageNet by 2.7% without hurting the hardware perfor-
mance. Using the similar compute resources, NAAS achieves
3.0⇥, 1.9⇥ EDP improvements compared to Neural-Hardware
Architecture Search [12], and NASAIC [11] respectively.

II. NEURAL ACCELERATOR ARCHITECTURE SEARCH

Figure 1 shows the optimization flow of Neural Accelerator
Architecture Search (NAAS). NAAS explores the design space
of accelerators, and compiler’s mappings simultaneously.

A. Accelerator Architecture Search
a) Design Space: The accelerator design knobs can be

categorized into two classes:

1) Architectural Sizing: the number of processing elements
(#PEs), private scratch pad size (L1 size), global buffer
size (L2 size), and memory bandwidth.

2) Connectivity Parameters: the number of array dimensions
(1D, 2D or 3D array), array size at each dimension, and
the inter-PE connections.

Most state-of-art searching frameworks only contains archi-
tectural sizing parameters in their design space. These sizing
parameters are numerical and can be easily embedded into
vectors during search. On the other hand, PE connectivity is
difficult to encode as vectors since they are not numerical
numbers. Moreover, changing the connectivity requires re-
designing the compiler mapping strategies, which extremely
increase the searching cost. In NAAS, besides the architectural
sizing parameters which are common in other frameworks, we
introduce the connectivity parameters into our search space,
making it possible to search among 1D, 2D and 3D array
as well, and thus our design space includes almost the entire
accelerator design space for neural network accelerators.

b) Encoding: We first model the PE connectivity as the
choices of parallel dimensions. For example, parallelism in
input channels (C) means a reduction connection of the partial
sum register inside each PE. Parallelism in output channels
means a broadcast to input feature register inside each PE. The
most straight-forward method to encode the parallel dimension
choice is to enumerate all possible parallelism situations and
choose the index of the enumeration as the encoding value.
However, since the increment or decrement of indexes does not
convey any physical information, it is hard to be optimized.

To solve this problem, we proposed the “importance-based”
encoding method for choosing parallelism dimensions in
the dataflow and convert the indexing optimization into the
sizing optimization. For each dimension, our optimizer will
generate an importance value. To get the corresponding parallel
dimensions, we first collect all the importance value, then sort
them in decreasing order, and select the first k dimensions as
the parallel dimensions of a k-D compute array. As shown
in the left of Figure 3, the generated candidate is a 2D array
with size 16⇥ 16. To find the parallel dimension for this 2D
array candidate, The importance values are first generated for
6 dimensions in the same way as other numerical parameters
in the encoding vector. We then sort the value in decreasing
order and determine the new order of the dimensions. Since
the importance value of “C” and “K” are the largest two
value, we finally select “C” and “K” as the parallel dimensions
of this 2D array. The importance value of the dimension
represents the priority of the parallelism: a larger value indicates
a higher priority and a higher possibility to be paralleled in the
computation loop nest, which contains higher relativity with
accelerator design compared to indexes of enumerations.

For other numerical parameters, we use the straight-forward
encoding method. The whole hardware encoding vector is
shown in Figure 2, which contains all of the necessary
parameters to represent an accelerator design paradigm.

c) Evolution Search: We leverage the evolution strat-
egy [17] to find the best solution during the exploration. In

To
p-

1
A

cc
ur

ac
y

74

75

76

77

78

79

80

Normalized EDP
0 0.5 1 1.5 2

Eyeriss
NAAS (accelerator-compiler co-search)
NAAS (accelerator-compiler-NN co-search)

4.42×

+2.7%

Can we go even smaller?

TinyML and Efficient Deep Learning

• AutoML and NAS
- Once-for-all Network [ICLR’19] 

• TinyML
- Inference: MCUNet for IoT Devices [NeurIPS’20, spotlight]

- Training: Tiny On-Device Transfer Learning (TinyTL) [NeurIPS’20] 

• Data-Efficiency
- Differentiable Augmentation for Data-Efficient GAN Training [NeurIPS’20]

1MIT 2National Taiwan University 3MIT-IBM Watson AI Lab

MCUNet: Tiny Deep Learning
on IoT Devices

NeurIPS 2020 (spotlight)

Ji Lin1 Wei-Ming Chen1,2 John Cohn3Yujun Lin1 Song Han1Chuang Gan3

• Low-cost, low-power

Background: The Era of AIoT on Microcontrollers (MCUs)

Background: The Era of AIoT on Microcontrollers (MCUs)

• Low-cost, low-power • Rapid growth

#U
ni

ts
 (B

illi
on

)

0
10
20
30
40
50

12 13 14 15F 16F 17F 18F 19F

Smart Retail Personalized Healthcare

…

• Wide applications

• Low-cost, low-power MCU • Rapid growth

#U
ni

ts
 (B

illi
on

)

0
10
20
30
40
50

12 13 14 15F 16F 17F 18F 19F

Background: The Era of AIoT on Microcontrollers (MCUs)

Smart Manufacturing Autonomous Driving

Deep Learning Going “Tiny”

Cloud AI

=> ResNet

Mobile AI 
=> MobileNet

Tiny AI

=> MCUNet

Data centers, connection  
required, privacy issue

IoT devices, cheap, small,  
low-power, rapid growth

- The future belongs to Tiny AI.

- There are billions of IoT devices around the world based on microcontrollers

- Much cheaper, much smaller, almost everywhere in our lives.

- If we can enable powerful AI algorithms on those IoT devices, we can greatly

democratize AI and extend the applications of deep learning.

Smartphones

process locally

32GB 4GB 320KB

Cloud AI Mobile AI Tiny AI

Challenge: Memory Too Small to Hold DNN

Memory (Activation)

Storage (Weights)

16GB

~TB/PB

4GB

256GB

320kB

1MB13,000x
smaller

50,000x
smaller

- Tiny model design is fundamentally different.

- No DRAM. No operating system (no virtual memory).

- Can’t directly scale. (non-proportional activation vs. params)

0

2.4

4.8

7.2

9.6

12

Param (MB) Peak Activation (MB)

ResNet-18 MobileNetV2-0.75 MCUNet

(calculated in INT8)

Params:  
4.6x smaller

Activation:  
1.8x bigger!

(all with ~70% ImageNet Top-1)

Our budget 512KB

Activation is the bottleneck, not parameters

MCUNet: TinyNAS + TinyEngine

Search space design is crucial for NAS performance

There is no prior expertise on MCU model design

Optimized Search SpaceFull Network Space Model Specialization

Memory/Storage
Constraints

0

2.4

4.8

7.2

9.6

12

Param (MB) Peak Activation (MB)

ResNet-18 MobileNetV2-0.75 MCUNet

MCUNet:

6.1x

MCUNet:

3.4x

(all with ~70% ImageNet Top-1)

Reduce Both Model Size and Activation Size

Our budget 512KB

MCUNet: TinyNAS+TinyEngine Co-design

TinyEngineTinyNAS

Efficient Memory Scheduling / Runtime

AutoML, Efficient Neural Architecture

MCUNet

•TinyNAS:

•Re-design the design space

•Latency-aware

•Energy-aware

•Once-for-all Network: 
train once, get many

•TinyEngine:

•Co-design, specialization

•Run time => Compile time

•Graph optimizations

•Memory-aware scheduling

•Low-precision

•Assembly-level optimizations

MCUNet: TinyNAS+TinyEngine

• ImageNet classification on STM32F746 MCU (320kB SRAM, 1MB Flash)

39Baseline (MbV2*+CMSIS)

ImageNet Top1: 35% 45% 55% 65%

* scaled down version: width multiplier 0.3, input resolution 80

MCUNet: TinyNAS+TinyEngine

56
49

39Baseline (MbV2*+CMSIS)

System-only (MbV2**+TinyEngine)

Model-only (TinyNAS+CMSIS)

ImageNet Top1: 35% 45% 55% 65%

• ImageNet classification on STM32F746 MCU (320kB SRAM, 1MB Flash)

* scaled down version: width multiplier 0.3, input resolution 80
** scaled down version: width multiplier 0.35, input resolution 144

MCUNet: TinyNAS+TinyEngine

62
56

49
39Baseline (MbV2*+CMSIS)

System-only (MbV2**+TinyEngine)

Model-only (TinyNAS+CMSIS)

Co-design (TinyNAS+TinyEngine)

ImageNet Top1: 35% 45% 55% 65%

• ImageNet classification on STM32F746 MCU (320kB SRAM, 1MB Flash)

* scaled down version: width multiplier 0.3, input resolution 80
** scaled down version: width multiplier 0.35, input resolution 144

Bring AI to IoT Devices

+17%
more 

 accurate

50

55

60

65

70

75

70.7%

53.8%

3x faster4x smaller

0

36

72

108

144

180

41KB

161KB

ImageNet Top-1

AccuracyMemory Usage Speedup

0

70

140

210

280

350

102ms

309ms

Tensorflow-Lite Micro+MBv2 MCUNet (TinyNAS+TinyEngine)

tinyml.mit.edu

toy IoT applications

large scale, real-world applications

MCUNet

face/mask detection, person detection,  
VWW on STM32F746 (1MB Flash)

http://tinyml.mit.edu
http://connected

TinyEngine: Memory Saving

65

TinyEngine: Speedup

50

55

60

65

70

75

53.8

70.7

65.9
63.562.0

ImageNet Top-1 Accuracy (%)

STM32F412

(256kB/1MB)

STM32F746

(320kB/1MB)

STM32F765

(512kB/1MB)

STM32H743

(512kB/2MB)

• Design specialized models for different MCUs

The first to achieve >70%
ImageNet accuracy on
commercial MCUs

MobileNetV2+CMSIS-NN

+17%

Once-for-All Network + MCUNet

(SRAM/Flash)

Visual Wake Words (VWW)

Audio Wake Words (Speech Commands)
G

SC
 A

cc
ur

ac
y

88

90

92

94

96

0 340 680 1020 1360 1700

MCUNet MobileNetV2 ProxylessNAS

88

90

92

94

96

30 147.5 265 382.5 500

10FPS

5FPS
2.8× faster 4.1× smaller

2% higher

256kB
constraint

Latency (ms) Peak SRAM (kB)
(a) Trade-off: accuracy vs. measured latency (b) Trade-off: accuracy vs. peak memory

OOM

Demo: Visual Wake Words on MCU

• Detecting if there is person 

• STM32F746

• 320KB SRAM

• 1MB Flash

• ARM Cortex-M7 @216MHz 

Demo: Face Mask Detection on MCU

• Detecting faces & masks 

• STM32F746

• 320KB SRAM

• 1MB Flash

• ARM Cortex-M7 @216MHz 

Demo: Person Detection on MCU

• Detecting persons 

• STM32F746

• 320KB SRAM

• 1MB Flash

• ARM Cortex-M7 @216MHz 

NuScenes LiDAR Segmentation Challenge

1 Spinning LiDAR (20 Hz, 32 channels)

40,000 annotated frames

1,000 driving sequences

LiDAR Segmentation Challenge @ICRAnuScenes Dataset

16 semantic classes

35,000 points per frame

100m x 100m x 20m spatial range

Point-Voxel Convolution (PVConv)

Comparisons with Voxel-Based Models

Point-based branch captures high-resolution
information efficiently, which resolves the issue

of large memory footprint.

Comparisons with Point-Based Models

Voxel-based branch conducts convolution over a
regular grid representation, which resolves the

issue of random memory access.

Low-Cost Point-Based Branch Provides Fine Details of the Scene

person
person

traffic sign

trunk

cyclist

trunk

Huge Improvements on Safety-Critical Small Objects

Bicycle

51.6

40.4

Person

65.7

60.9

Motorcyclist

43.7

18.7

+5% +11% +25%

OursMinkowskiNet

Point-Based Feature Transformation (Fine-Grained)

Voxel-Based Feature Aggregation (Coarse-Grained)

Multi-Layer Perception

Convolve DevoxelizeVoxelize

Normalize Fuse

Challenge Results

Ours (2021)

Ours (2020)

Industry

Submissions

Best LiDARSeg Submission @ ICRA 2021
Ranks 1st on the NuScenes Leaderboard

(+2.8) (x3.5)
Huawei

(+2.5)

Google

UISEE

Horizon Robotics
CUHK

MinkowskiNet: 3.4 FPS

SPVNAS (Ours): 9.1 FPS

Self-driving: a whole trunk of GPU

AR/VR: a whole backpack of computer

 
SPVNAS, ECCV’20

Mobile phone: limited battery

Efficient Point Cloud

Efficient Point Cloud
State-of-the-Art Accuracy

First Place on SemanticKITTI Leaderboard (as of Fall 2020)

Object Part

Segmentation

2.7x measured speedup

1.5x memory reduction

Indoor Scene

Semantic Segmentation

6.9x measured speedup

5.7x memory reduction

Outdoor Scene

Semantic Segmentation

2.7x measured speedup

7.6x computation reduction

Real-Time Inference on Edge Devices

“Project of the Month” by NVIDIA Jetson Community

Jetson Nano Jetson TX2 Jetson NX Xavier Jetson AGX Xavier

139.9

82.6

42.6
19.9

76.0

45.4

20.3
8.2

PointNet (83.7 mIoU) Ours (85.2 mIoU)

O
bj

ec
ts

 p
er

 S
ec

on
d

PVCNN, NeurIPS’19

SPVNAS, ECCV’20

FastLidarNet, ICRA’21

3D LiDAR Sensor 3D Point Cloud: 2M points/s

30fps

[Liu et al. ICRA’21]Efficient Point Cloud

Demo:

In collaboration with Daniela Rus

Too slow to drive

Real time!

fps

fps

fps

After 10 seconds
of optimization by
SemAlign:

SemAlign: Annotation-Free Camera-LiDAR Calibration with Semantic Alignment Loss
[IROS’21]

N points * 3 dimension M points * 2 dimension

N points * 2 dimension

N points * M copies * 2 dimension N copies * M points * 2 dimension
torch.sum(torch.pow(left-right, 2))

N * M matrix

N * 1 matrix

torch.min()

Loss
torch.mean()

nn.Parameter(Calibration Matrix)

distance matrix between each point

distance matrix of each
point to its nearest neighbor

3D to 2D projection

SemAlign: Annotation-Free Camera-LiDAR Calibration with Semantic Alignment Loss

SemAlign: Annotation-Free Camera-LiDAR Calibration with Semantic Alignment Loss
[IROS’21]

Calibrated

Original

SemAlign: Annotation-Free Camera-LiDAR Calibration with Semantic Alignment Loss
[IROS’21]

Algorithm-Hardware Co-Design for Efficient LiDAR-Based Autonomous Driving

Specialized Accelerator Design: PointAcc [Micro’21]

Future Plan

Co-Design with

Point Cloud Networks FPGA prototype

Point Cloud

Networks

PointAcc
FPGA

Significant Speedups and Energy Savings over CPU, GPU and TPU

• Assorted Applications: classification, semantic segmentation, detection

• Various Networks: PointNet, PointNet++, MinkowskiNet

• Diverse Inputs: single objects, indoor scenes, outdoor scenes

PointNet

PointNet++ (c)

PointNet++ (ps)

F-PointNet++

PointNet++ (s)
MinkNet(i)

MinkNet(o)
GeoMean

94
51

94106131
8297127

797110288

269

37

113

27

42

8
54334

over NVIDIA RTX 2080Ti over Intel Xeon Skylake + TPU V3 over Intel Xeon Gold 6130

Sp
ee

du
p

PointNet

PointNet++ (c)

PointNet++ (ps)

F-PointNet++

PointNet++ (s)
MinkNet(i)

MinkNet(o)
GeoMean

193139
268221394

152119172 268
127

324
161

682

99169

1,319

2113
3645

16251418

En
er

gy
 S

av
in

g

Lower Latency and Higher Accuracy with PointAcc (Edge)

PointNet++
 (c)

PointNet++
 (ps)

F-PointNet++

PointNet++
 (s)

GeoMean

4
76

33

128134209
87109

142119
910

over Mesorasi-SW on Jetson Nano
over Mesorasi-SW on Raspberry Pi 4B
over Mesorasi-HW

Sp
ee

du
p

50

55

60

65

70

1

10

100

1000

Mesorasi-S
W

PointNet++
Mesorasi-H

W

PointNet++

PointAcc (Edge)

Mini-M
inkNet

N
or

m
al

iz
ed

 S
pe

ed
up

M
ea

n
Io

U

MIT Driverless

Accuracy: 95.0%

Range: 8 meters

Latency: 2 ms/object

PVCNN (Ours)
Accuracy: 99.9%

Range: 12 meters

Latency: 1.25 ms/object

Challenge Results

Ours (2021)

Ours (2020)

Industry

Submissions

Best LiDARSeg Submission @ ICRA 2021
Ranks 1st on the NuScenes Leaderboard

(+2.8) (x3.5)
Winner (2020)

(+2.5)

Efficient Video Recognition TSM, ICCV 2019

LED Bulb Level!

Training Time Accuracy Peak GPU
Performance Speed-up

1 Nodes  
(6 GPUs) 49h 50min 74.1% 46.5 TFLOP/s 1x

256 Nodes  
(1536 GPUs) 14min 74.0% 11,978 TFLOP/

s 211x

Scaling Down Inference:

Inference on Low-power Edge Devices

Compress the model by 6x, higher accuracy

6x less  
computation

Spotlight by IBM director Dario Gil
@MIT-IBM Watson AI Lab’s AI Research Week

Scaling Up Training:  
Large-Scale Distributed Training with 1536 GPUs

https://arxiv.org/pdf/1811.08383.pdf

TinyML and Efficient Deep Learning

• AutoML and NAS
- Once-for-all Network [ICLR’19] 

• TinyML
- Inference: MCUNet for IoT Devices [NeurIPS’20, spotlight]

- Training: Tiny On-Device Transfer Learning (TinyTL) [NeurIPS’20] 

• Data-Efficiency
- Differentiable Augmentation for Data-Efficient GAN Training [NeurIPS’20]

TinyTL: Reduce Memory, not Parameters  
for Efficient On-Device Learning

NeurIPS 2020

MIT MIT-IBM Watson AI Lab1 2

Song Han1Chuang Gan2 Ligeng Zhu1Han Cai1

89

The Rise of AIoT

IoT + AI = AIoT

91

● Customization: AI systems need to continually adapt to new data collected from the sensors.

User Intelligent Edge Devices

New and Sensitive

Data

…

Tiny Transfer Learning

User Intelligent Edge Devices

New and Sensitive

Data

…

Cloud Server

On-device Learning

Cloud-based Learning

● Customization: AI systems need to continually adapt to new data collected from the sensors.

● Security: Data cannot leave devices because of security and regularization. 

● TinyTL reduces the training memory from 300MB to 16MB

Tiny Transfer Learning

0

125

250

375

500

M
bV

2

M

em
or

y
Fo

ot
pr

in
t (

M
B)

Inference

Batch Size = 1

Training

Batch Size = 8

• Edge devices have tight memory constraints. The training memory footprint of
neural networks can easily exceed the limit.

• Edge devices are energy-constrained. Failing to fit the training process into the
energy-efficient on-chip SRAM will significantly increase the energy cost.

93

Training Memory is much Larger than Inference

0

125

250

375

500

M
bV

2

M

em
or

y
Fo

ot
pr

in
t (

M
B)

Inference

Batch Size = 1

Training

Batch Size = 8

• Edge devices have tight memory constraints. The training memory footprint of
neural networks can easily exceed the limit.

• Edge devices are energy-constrained. Failing to fit the training process into the
energy-efficient on-chip SRAM will significantly increase the energy cost.

MCU: 2MB

Raspberry Pi 1 DRAM
256MB

94

Training Memory is much Larger than Inference

0

125

250

375

500

Efficient On-device Learning Requires Small Training Memory

TPU SRAM

28MB

Raspberry Pi 1 DRAM
256MBM

bV
2

M
em

or
y

Fo
ot

pr
in

t (
M

B)

Inference

Batch Size = 1

Training

Batch Size = 8

• Edge devices have tight memory constraints. The training memory footprint of
neural networks can easily exceed the limit.

95

Activation is the Memory Bottleneck, not Parameters

• Activation is the main bottleneck for on-device learning, not parameters.

0

200

400

600

800

Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

6.9x larger

Activation is the
main bottleneck,
not parameters.

96

Activation is the Memory Bottleneck, not Parameters

• Activation is the main bottleneck for on-device learning, not parameters.

• Previous methods focus on reducing the number of parameters or
FLOPs, while the main bottleneck does not improve much.

0

200

400

600

800

Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

The main bottleneck does
not improve much.

6.9x larger

Activation is the
main bottleneck,
not parameters.

4.3x

1.1x

97

0

10

20

30

#Trainable Param (M)

Related Work: Parameter-Efficient Transfer Learning

98

13x

50

59

68

77

86

95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

large accuracy drop

• Full: Fine-tune the full network. Better accuracy but highly inefficient.

• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

0

10

20

30

#Trainable Param (M)

Related Work: Parameter-Efficient Transfer Learning

• Mudrakarta, Pramod Kaushik, et al. "K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning." ICLR 2019.

50

59

68

77

86

95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

12x

• Full: Fine-tune the full network. Better accuracy but highly inefficient.

• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

• BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient.

0

200

400

600

800

Memory Cost (MB)
50

59

68

77

86

95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

Related Work: Parameter-Efficient Transfer Learning

100

1.8x
Parameter-efficiency does
not directly translate to
memory-efficiency

• Full: Fine-tune the full network. Better accuracy but highly inefficient.

• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

• BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient, but the

memory saving is limited.

0

200

400

600

800

Memory Cost (MB)
50

59

68

77

86

95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

Related Work: Parameter-Efficient Transfer Learning

101

1.8x
Parameter-efficiency does
not directly translate to
memory-efficiency

12%

• Full: Fine-tune the full network. Better accuracy but highly inefficient.

• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

• BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient, but the

memory saving is limited. Significant accuracy loss.

TinyTL: Memory-Efficient Transfer Learning

102

0

200

400

600

800

Memory Cost (MB)

6x

50

59

68

77

86

95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

• Full: Fine-tune the full network. Better accuracy but highly inefficient.

• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

• BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient, but the

memory saving is limited. Significant accuracy loss.

• TinyTL: fine-tune bias only + lite residual learning: high accuracy, large memory saving

1.8x
12%

Weight update is Memory-expensive;  
Bias update is Memory-efficient

Fine-tune the full network (Conventional)

fmap in memory fmap not in memory

learnable params fixed params weight bias

 mobile inverted bottleneck blockith

C, R 6C, R 6C, R C, R

1x1 Conv1x1 Conv Depth-wise Conv

ai+1 = aiWi + bi

∂L
∂Wi

= aT
i

∂L
∂ai+1

,
∂L
∂bi

=
∂L

∂ai+1
=

∂L
∂ai+2

WT
i+1

Forward:

Backward:

• Updating weights requires storing intermediate activations

• Updating biases does not

103

TinyTL Idea 1: Fine-tune Bias Only

0

80

160

240

320

400
Full BN+Last Bias+Last

Memory Cost (MB)

12x

smaller

104

Freeze weights, only fine-tune biases => save 12x memory

∂L
∂Wi

= aT
i

∂L
∂ai+1

,
∂L
∂bi

=
∂L

∂ai+1
=

∂L
∂ai+2

WT
i+1Backward:

• Updating weights requires storing intermediate activations

• Updating biases does not

y=Wa+b

TinyTL Idea 2: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only

Lite residual learning

UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

• Add lite residual modules (small memory overhead) to increase model capacity 

weight bias

105

• (1/6 channel, 1/2 resolution, 2/3 depth)

tinyml.mit.edu

TinyTL Idea3: Specialized Models for Different Tasks

[61] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016. 6

[62] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016. 8

[63] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian
Sun. Single path one-shot neural architecture search with uniform sampling. arXiv preprint
arXiv:1904.00420, 2019. 13

A Details of Feature Extractor Adaptation

Conventional transfer learning chooses the feature extractor according to the pre-training accuracy
(e.g., ImageNet accuracy) and uses the same one for all transfer tasks [44, 45]. However, we find
this approach sub-optimal since different target tasks may need very different feature extractors, and
high pre-training accuracy does not guarantee good transferability of the pre-trained weights. This is
especially critical in our case where the weights are frozen.

ImageNet

super net
w. weight
sharing

sub-ops (including skip)

(1) Pre-training (cloud) (2) Fine-tuning on the target dataset (edge) (3) Discrete op selection (edge)

target
dataset

discrete op
selection

random sample

target
dataset

ImageNet Head +
Lightweight residual

Head +

Lightweight residual

Head +

Lightweight residual

fmap in memory

fmap not in memory

learned weights

pre-trained weights

MobileNetV2 ResNet-34 MnasNet ProxylessNAS MobileNetV3 ResNet-50 ResNet-101 Inception-v3

ImageNet Top1 72.0 73.3 74.0 74.6 75.2 77.2 78.3 78.8

70.0

72.5

75.0

77.5

80.0

ImageNet Top1 (%)

MobileNetV2 ResNet-34 MnasNet ProxylessNAS MobileNetV3 ResNet-50 ResNet-101 Inception-v3

Flowers102 91.7 90.6 90.8 90.3 83.2 92.4 92.1 84.5

80.0

83.8

87.5

91.3

95.0

Flowers Top1 (%)

MobileNetV2 ResNet-34 MnasNet ProxylessNAS MobileNetV3 ResNet-50 ResNet-101 Inception-v3

MobileNetV2 ResNet-34 MnasNet ProxylessNAS MobileNetV3 ResNet-50 ResNet-101 Inception-v3

Stanford cars 51.6 49.2 47.3 48.8 42.4 51.6 53.4 55.0

35.0

42.5

50.0

57.5

65.0

Cars Top1 (%)

MobileNetV2 ResNet-34 MnasNet ProxylessNAS MobileNetV3 ResNet-50 ResNet-101 Inception-v3

Aircraft 44.2 41.3 41.6 43.2 37.4 41.5 41.5 45.9

35.0

40.0

45.0

50.0

55.0

Aircraft Top1 (%)

70.0

72.5

75.0

77.5

80.0

ImageNet Top1 (%)
80.0

83.8

87.5

91.3

95.0

Flowers Top1 (%)

MobileNetV2 ResNet-34 MnasNet ProxylessNAS MobileNetV3 ResNet-50 ResNet-101 Inception-v3

35.0

42.5

50.0

57.5

65.0

Cars Top1 (%)
35.0

40.0

45.0

50.0

55.0

Aircraft Top1 (%)

1

Figure 6: Transfer learning performances of various ImageNet pre-trained models with the last linear
layer trained. The relative accuracy order between different pre-trained models changes significantly
among ImageNet and the transfer learning datasets.

Figure 6 shows the top1 accuracy of various widely used ImageNet pre-trained models on three
transfer datasets by only learning the last layer, which reflects the transferability of their pre-trained
weights. The relative order between different pre-trained models is not consistent with their ImageNet
accuracy on all three datasets. This result indicates that the ImageNet accuracy is not a good proxy
for transferability. Besides, we also find that the same pre-trained model can have very different
rankings on different tasks. For instance, Inception-V3 gives poor accuracy on Flowers but provides
top results on the other two datasets.

Therefore, we need to specialize the feature extractor to best match the target dataset. In this work,
we achieve this by using a pre-trained once-for-all network [10] that comprises many different
sub-networks. Specifically, given a pre-trained once-for-all network on ImageNet, we fine-tune it
on the target transfer dataset with the weights of the main branches (i.e., MB-blocks) frozen and the
other parameters (i.e., biases, lite residual modules, classifier head) updated via gradient descent. In
this phase, we randomly sample one sub-network in each training step. The peak memory cost of
this phase is 61MB under resolution 224, which is reached when the largest sub-network is sampled.
Regarding the computation cost, the average MAC (forward & backward)4 of sampled sub-nets
is (776M + 2510M) / 2 = 1643M per sample, where 776M is the training MAC of the smallest
sub-network and 2510M is the training MAC of the largest sub-network. Therefore, the total MAC
of this phase is 1643M ⇥ 2040 ⇥ 0.8 ⇥ 50 = 134T on Flowers, where 2040 is the number of total
training samples, 0.8 means the once-for-all network is fine-tuned on 80% of the training samples
(the remaining 20% is reserved for search), and 50 is the number of training epochs.

Based on the fine-tuned once-for-all network, we collect 500 [sub-net, accuracy] pairs on the
validation set (20% randomly sampled training data) and train an accuracy predictor5 using the
collected data [10]. We employ evolutionary search [63] based on the accuracy predictor to find the
sub-network that best matches the target transfer dataset. No back-propagation on the once-for-all

4The training MAC of a sampled sub-network is roughly 2⇥ larger than its inference MAC, rather than 3⇥,
since we do not need to update the weights of the main branches.

5Details of the accuracy predictor is provided in Appendix B.

13

The relative accuracy order between different pre-trained models changes significantly
among ImageNet and the transfer learning datasets, which motivates personalized and
specialized NN architecture for different downstream tasks.

tinyml.mit.edu

TinyTL + Once-for-All Network
personalized model for different hardware and different tasks

difficult dataset

easy dataset

• TinyTL provides 4.6x memory saving without accuracy loss.

• [1] Chatfield, Ken, et al. "Return of the devil in the details: Delving deep into convolutional nets." BMVC 2014.

• [2] Mudrakarta, Pramod Kaushik, et al. "K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning." ICLR 2019.

• [3] Kornblith, Simon, Jonathon Shlens, and Quoc V. Le. "Do better imagenet models transfer better?." CVPR 2019.

108

45

55

65

75

85

95

0 75 150 225 300

TinyTL Fine-tune BN+Last [1] Fine-tune Last [2] Fine-tune Full Network [3]

Training Memory (MB)

C
ar

s

4.6x saving

Memory Saving

Memory Saving

• On different datasets, TinyTL provides up to 6.5x memory saving without accuracy loss.

• [1] Chatfield, Ken, et al. "Return of the devil in the details: Delving deep into convolutional nets." BMVC 2014.

• [2] Mudrakarta, Pramod Kaushik, et al. "K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning." ICLR 2019.

• [3] Kornblith, Simon, Jonathon Shlens, and Quoc V. Le. "Do better imagenet models transfer better?." CVPR 2019.

109

Training Memory (MB)

88

90

92

94

96

98

0 100 200 300 400

Fl
ow

er
s

65

69

73

77

81

85

0 100 200 300 400
Training Memory (MB)

Fo
od

6.5x saving
4.5x saving

45

55

65

75

85

95

0 75 150 225 300

TinyTL Fine-tune BN+Last [1] Fine-tune Last [2] Fine-tune Full Network [3]

Training Memory (MB)

C
ar

s

4.6x saving

TinyTL enables in-memory training

• TinyTL (tiny transfer learning) supports batch 1 training by group normalization.

• Together with the lite residual model, it further reduces the training memory cost

to 16MB (fits L3 cache), enabling fitting the training process into cache, which is
much more energy-efficient than training on DRAM.

110

45

55

65

75

85

95

0 75 150 225 300

TinyTL (batch size 1) TinyTL Fine-tune Full Network

Training Memory (MB)

C
ar

s

Typical L3 Cache Size: 16MB

TinyML and Efficient Deep Learning

• AutoML and NAS
- Once-for-all Network [ICLR’19] 

• TinyML
- Inference: MCUNet for IoT Devices [NeurIPS’20, spotlight]

- Training: Tiny On-Device Transfer Learning (TinyTL) [NeurIPS’20] 

• Data-Efficiency
- Differentiable Augmentation for Data-Efficient GAN Training [NeurIPS’20]

Data Is Expensive

FFHQ dataset: 70,000 selective post-processed human faces

Months or even years to collect the data,
along with prohibitive annotation costs.

ImageNet dataset: millions of images from diverse categories

O
bam

a

100 im

ages

Generated samples of StyleGAN2 (Karras et al.)

using only hundreds of images

C
at (Sim

ard et al.)

160 im

ages
D

og (Sim
ard et al.)

389 im
ages

GANs Heavily Deteriorate Given Limited Data

GANs Heavily Deteriorate Given Limited Data

FI
D

↓

0

10

20

30

40

100% training data 20% training data 10% training data

14.5
12.2

9.9

36.0

23.1

11.1

StyleGAN2 (baseline) + DiffAugment (ours)

worse quality given less training data

CIFAR-10

Discriminator Overfitting

#1 Approach: Augment reals only

Augment reals only: the same artifacts appear on the generated images.

Artifacts from Color jittering

Artifacts from Translation

Artifacts from Cutout (DeVries et al.)

Generated images

Augment 𝑫 only: the unbalanced optimization cripples training.

#2 Approach: Augment reals & fakes for only𝑫

Our approach (DiffAugment): Augment reals + fakes for both 𝐷 and 𝐺

#3 Approach: Differentiable Augmentation (Ours)

Color

Translation

Cutout

Color

Translation

Cutout

fakes reals

FI
D

↓

0

10

20

30

40

100% training data 20% training data 10% training data

14.5
12.2

9.9

36.0

23.1

11.1

StyleGAN2 (baseline) + DiffAugment (ours)

FI
D

↓

0

10

20

30

40

100% training data 20% training data 10% training data

14.5
12.2

9.9

36.0

23.1

11.1

StyleGAN2 (baseline) + DiffAugment (ours)

Our Results

worse quality given less training data

matches state of the art with only 20% data

Train GAN with only 100 Images

Without our technique:

Generated samples of StyleGAN2 (baseline)

Generated samples of StyleGAN2 + DiffAugment (ours)

With our technique:

Without our technique:

With our technique:

Train GAN with only 100 Images

FI
D
↓

0

12.75

25.5

38.25

51

Performance

Scale/Shift (Noguchi et al.) MineGAN (Wang et al.) TransferGAN (Wang et al.) FreezeD (Mo et al.)
Ours

Tr

ai
ni

ng
 Im

ag
es

1

10

100

1000

10000

100000

Data

Fine-Tuning vs. Ours

No pre-training

100-shot Obama

Smooth interpolation, generalize well

https://github.com/mit-han-lab/data-efficient-gans

Train GAN with only 100 Images

https://github.com/mit-han-lab/data-efficient-gans

Data-Efficient Deep Learning

124

Various factual and ethical reasons could cause limited data available.
This research will help alleviate these limitations.

Rare incidents Privacy concerns Under-represented subpopulations

Many engineers

A lot of data

A lot of computation

A lot of carbon

TinyML and Efficient Deep Learning
Three aspects: computation, engineers, data

TinyML and Efficient Deep Learning

• AutoML and NAS
- Once-for-all Network [ICLR’19] 

• TinyML
- Inference: MCUNet for IoT Devices [NeurIPS’20, spotlight]

- Training: Tiny On-Device Transfer Learning (TinyTL) [NeurIPS’20] 

• Data-Efficient
- Differentiable Augmentation for Data-Efficient GAN Training [NeurIPS’20]

Hardware for AI and Neural-net

Proposal for DARPA-NVIDIA-SDH Initiative

PI: Song Han

Project 1: ”Efficient Hardware Primitives for Sparse Linear Algebra”

Pruning techniques [Han’15] show that DNN models can be pruned to very sparse,
saving the FLOPs by 10x and model size by 8x (FC layer, index included). However, it’s
challenging for general purpose hardware to take advantage of sparsity. EIE [Han’16] is
the first hardware accelerator for sparse DNN, it’s efficient but it lacks flexibility. TACO
[Kjolstad’17] is a flexible compiler for sparse linear algebra on CPU, but it lacks
accelerator support. Therefore, I plan to work on an specialized accelerator for sparse
linear algebra. There are two basic operations to be accelerated: union (OR) and join
(AND). Software implementation need O(n) cycles. I plan to work on O(log(n)) time
complexity, O(n) area complexity arrays; or O(1) time complexity, O(n^2) space
complexity arrays. After that, I’d like to implement this architecture in FPGA or ASIC,
then integrate the HW primitive into TACO. Then, I want to co-design the machine
learning models that are not only pruned to be sparse, but also with the optimal
granularity of sparsity that fits the accelerator. Lastly, I’ll demonstrate a few machine
learning applications accelerated with such sparse primitives: machine translation,
speech recognition, image classification, and Progressive GAN, which makes real-time
AI and embedded-AI possible for IoT devices. It can also make cloudAI more energy
efficient by saving the electric bill and total cost of ownership (TCO).

Potential product impact for NVIDIA: future DLA architectures in Xavier, Orin, etc.

Project 2: “Optimal Number Representation for Efficient Training/Inference”

“Number representation” is a fundamental problem for efficient machine learning. For
inference, Linear Quantization [TensorRT] or Kmeans Quantization [Han’16] are two
extremes of quantization. The former has easy hw implementation but poor
expressiveness. The latter has inefficient hw implementation (need register lookup
every time) but flexible expressiveness. For training, Conventional fp16 or fp32 are also
inefficient, since training DNNs needs more dynamic range and exciting methods need
careful scaling factor tuning to avoid underflow or overflow [NVIDIA’17]. Given the large
design space, we are interested in learning to learn the optimal number representation
for deep learning. The design space include:  
[linear quantization, log quantization, kmeans quantization] x 
[weight, activation, gradient] x  
[training, inference] x [channel number] x [layer number] x [bit width] x [decimal point]  
This is a large design space that’s hard to be explored by human. It should be explored
by AI. I plan to use machine learning techniques to find the best number representation
for machine learning. It’s a co-design of number representation together with model
architecture, trading off hardware efficiency and model accuracy. I’d like to push the
pareto frontier of such trade-off.

Potential product impact for NVIDIA: future TensorRT and cuDNN libraries.

HAN Lab Students: Yujun Lin (Arch PhD), Hanrui Wang (Arch PhD), Zhijian Liu (ML PhD)

Hardware for AI and Neural-net

Proposal for DARPA-NVIDIA-SDH Initiative

PI: Song Han

Project 1: ”Efficient Hardware Primitives for Sparse Linear Algebra”

Pruning techniques [Han’15] show that DNN models can be pruned to very sparse,
saving the FLOPs by 10x and model size by 8x (FC layer, index included). However, it’s
challenging for general purpose hardware to take advantage of sparsity. EIE [Han’16] is
the first hardware accelerator for sparse DNN, it’s efficient but it lacks flexibility. TACO
[Kjolstad’17] is a flexible compiler for sparse linear algebra on CPU, but it lacks
accelerator support. Therefore, I plan to work on an specialized accelerator for sparse
linear algebra. There are two basic operations to be accelerated: union (OR) and join
(AND). Software implementation need O(n) cycles. I plan to work on O(log(n)) time
complexity, O(n) area complexity arrays; or O(1) time complexity, O(n^2) space
complexity arrays. After that, I’d like to implement this architecture in FPGA or ASIC,
then integrate the HW primitive into TACO. Then, I want to co-design the machine
learning models that are not only pruned to be sparse, but also with the optimal
granularity of sparsity that fits the accelerator. Lastly, I’ll demonstrate a few machine
learning applications accelerated with such sparse primitives: machine translation,
speech recognition, image classification, and Progressive GAN, which makes real-time
AI and embedded-AI possible for IoT devices. It can also make cloudAI more energy
efficient by saving the electric bill and total cost of ownership (TCO).

Potential product impact for NVIDIA: future DLA architectures in Xavier, Orin, etc.

Project 2: “Optimal Number Representation for Efficient Training/Inference”

“Number representation” is a fundamental problem for efficient machine learning. For
inference, Linear Quantization [TensorRT] or Kmeans Quantization [Han’16] are two
extremes of quantization. The former has easy hw implementation but poor
expressiveness. The latter has inefficient hw implementation (need register lookup
every time) but flexible expressiveness. For training, Conventional fp16 or fp32 are also
inefficient, since training DNNs needs more dynamic range and exciting methods need
careful scaling factor tuning to avoid underflow or overflow [NVIDIA’17]. Given the large
design space, we are interested in learning to learn the optimal number representation
for deep learning. The design space include:  
[linear quantization, log quantization, kmeans quantization] x 
[weight, activation, gradient] x  
[training, inference] x [channel number] x [layer number] x [bit width] x [decimal point]  
This is a large design space that’s hard to be explored by human. It should be explored
by AI. I plan to use machine learning techniques to find the best number representation
for machine learning. It’s a co-design of number representation together with model
architecture, trading off hardware efficiency and model accuracy. I’d like to push the
pareto frontier of such trade-off.

Potential product impact for NVIDIA: future TensorRT and cuDNN libraries.

HAN Lab Students: Yujun Lin (Arch PhD), Hanrui Wang (Arch PhD), Zhijian Liu (ML PhD)

Hardware, AI and Neural-nets

TinyML and Efficient AI

songhan.mit.edu  
tinyml.mit.edu

youtube.com/c/MITHANLab

https://songhan.mit.edu
http://tinyml.mit.edu
http://youtube.com/c/MITHANLab

